

保安検査基準 (液化石油ガス岩盤備蓄基地関係)

KHK/JOGMEC S 0850-8 (2024)

令和6年3月29日 改正

高圧ガス保安協会

独立行政法人エネルギー・金属鉱物資源機構

高圧ガス保安協会 高圧ガス規格委員会 構成表

氏名 所属

 (委員長)
 土橋 律
 東京大学大学院

 (副委員長)
 阪上隆英
 神戸大学大学院

 (委員)
 伊里友一朗
 横浜国立大学大学院

佐分利禎 国立研究開発法人産業技術総合研究所

百瀬英毅 大阪大学

千葉剛史三菱ケミカル株式会社日野圭太三井化学株式会社三浦 晃ENEOS株式会社

渡辺要KW 保安管理システム研究所大沼倫晃エア・ウォーター株式会社

関原章司 大陽日酸株式会社

佐々木元 アストモスエネルギー株式会社

▶中耕一 株式会社巴商会

中西博幸 テックプロジェクトサービス株式会社

齊藤壽
→ ガス保安検査株式会社

崎孝幸 茨城県

(令和6年3月)

高圧ガス保安協会 高圧ガス規格委員会 岩盤備蓄基地に係る保安検査基準等検討分科会 構成表

 (主査)
 徳永朋祥
 東京大学大学院

 (副主査)
 矢吹彰広
 広島大学大学院

 (委員)
 土橋 律
 東京大学大学院

 杉田 光
 岡山県

 影浦 裕
 愛媛県

村山公一ENEOS株式会社竹内征志波方ターミナル株式会社宮下国一郎日本地下石油備蓄株式会社

藤林芳和 新田管工株式会社 宮﨑智裕 千代田化工建設株式会社

永井哲夫 株式会社大日本ダイヤコンサルタント

金戸辰彦 JX 金属探開株式会社

黒瀬浩公 東電設計株式会社

(令和6年3月)

免責条項

高圧ガス保安協会及び独立行政法人石油天然ガス・金属鉱物資源機構は、この基準に対する第 三者の知的財産権にかかわる確認について責任を負いません。この基準に関連した活動の結果 発生する第三者の知的財産権の侵害に対し補償する責任は使用者にあることを認識し、この基 準を使用しなければなりません。

高圧ガス保安協会及び独立行政法人石油天然ガス・金属鉱物資源機構は、この基準にかかわる個別の設計、製品等の承認、評価又は保証に関する質問に対しては、説明する責任を負いません。

著作権に関する同意事項

高圧ガス保安協会は、公益社団法人石油学会が著作権を保有する配管維持規格 (JPI-8S-1-2023)の「5.1.1 検査箇所の選定」及び「付属書 A 腐食・エロージョンが起こりやすい箇所」をこの基準に転載することについての許可及び条件について事前に承諾を得たものです。したがって、石油学会の事前許可なして該当部分について本基準から転載を禁じます。

ここに、石油学会の関係者及び事務局に深く感謝の意を表します。

この基準に関する質問等について

1. 技術的内容に関わる質問

この基準を使用するにあたって、規定について不都合があり改正が必要と考えられる場合、 追加の規定が必要と思われる場合、又は規定の解釈に関して不明な点がある場合には、以下の 方法に従って技術的質問状を提出してください。技術的質問状は、高圧ガス保安協会の公正性、 公平性、公開性を原則とする技術基準策定プロセスを用いて運営される担当委員会組織により 検討された後、書面にて回答されます。

1. 1 技術的質問状の作成方法

1. 1 1 以要事項

技術的質問状には、以下の事項について明確に示してください。

a) 質問の目的

下記の中の一つを明示してください。

- 1) 現状の基準の規定の改正
- 2) 新しい規定の追加
- 3) 解釈
- b) 背景の情報

高圧ガス保安協会及びその担当委員会が、質問の内容について正しく理解するために必要な情報を提供してください。また、質問の対象となっている基準の名称、発行年、該当箇所を明示してください。

c) 補足説明の必要性

技術的質問状を提出する人は、その内容に関してさらに詳細な説明をするため、又は委員会委員から受けるであろう質問に関しての説明を行うため、担当委員会の会議に出席することができます。当該説明の必要がある場合には、その旨明記してください。

1. 1. 2 書式

a) 基準の規定の改正又は追加の場合

基準の改正又は追加に関する質問を提出する場合には、下記の項目を記してください。

1) 改正又は追加の提案

改正又は追加の提案を必要とする基準の該当規定を明確にするため、該当部分のコピーに手書き等で明示するなど、できるだけわかりやすく示したものを添付してください。

2) 必要性の概要説明

改正又は追加の必要性を簡単に説明してください。

3) 必要性の背景の情報

高圧ガス保安協会及びその担当委員会が提案された改正又は追加について、十分に評価し検討できるように、その提案の根拠となる技術的なデータ等の背景情報について提供してください。

b)解釈

解釈に関する質問を提出する場合には、下記の事項を記してください。

1) 質問

解釈を必要とする規定について明確にし、できるだけ簡潔な表現を用いて質問の提出者の当該規定に関する解釈が正しいか又は正しくないかを尋ねる形式の文章により提出してください。

2) 回答案

解釈に関する質問を提出する人が、上記 1) に対する回答案がある場合には、"はい" 又は"いいえ"に加えて簡単な説明又はただし書きを付した形式の回答案を付してください。

3) 必要性の背景の情報

高圧ガス保安協会及びその担当委員会が提案された解釈に関する質問について、十分に評価し検討できるように、その提案の背景を示してください。

1. 1. 3 提出形式

技術的質問状は原則ワープロ等で作成し、必要に応じて明瞭な手書きの書類等を添付してください。技術的質問状には、質問者の名前、所属先名称、住所、電話番号、FAX番号、電子メールアドレスを明記し、下記宛でに電子メール、FAX又は郵送により送付してください。なお、提出された情報(個人情報も含む)は、高圧ガス保安協会及びその担当委員会における必要な作業を行うために利用され、原則的に一般に公開する担当委員会において公表されることがあります。また、高圧ガス保安協会及びその担当委員開花に質問の内容について確認のため問い合わせを行う場合があります。

2. 技術的内容に関わる質問以外の質問

技術的内容に関わる質問以外の質問については、高圧ガス保安協会の基準担当がお答えいたしますので、電子メール、FAX又は郵送により下記宛てにお問い合わせください。

3. お問い合わせ先及び技術的質問状の送付先

この基準に関するご質問は下記までお問い合わせください。また、技術的質問状については書面で下記宛てにお送りください。

記

高圧ガス保安協会 保安技術部門 技術基準担当宛 〒105-8447 東京都港区虎ノ門 4-3-13 ヒューリック神谷町ビル

E-mail: hpg@khk.or.jp TEL: 03-3436-6103 FAX: 03-3438-4163

目 次

I 総則

- 1 適用範囲
- 2 検査項目及び検査方法
- 2.1 一般
- 2.2 テクノロジーの活用
- 2.3 経済産業大臣特別認可等による基準に係る検査方法について
- 3 技術基準条項と対応する検査方法の該当箇所
- 4 検査の周期(時期)

Ⅲ 保安検査の方法

- 1 警戒標 等
- 1.1 境界線 警戒標
- 1.2 可燃性ガスの貯槽であることが容易にわかる措置
- 1.3 バルブ等の操作に係る適切な措置
- 2 保安距離・施設レイアウト 等
- 2.1 保安距離
- 2.2 設備間距離
- 2.3 火気取扱施設までの距離
- 2.4 保安区画
- 2.4.1 区分·面積
- 2.4.2 高圧ガス設備の位置・燃焼熱量数値
- 2.5 滞留しない構造
- 2.6 計器室
- 3 高圧ガス設備の基礎・耐震設計構造 等
- 3.1 基礎
- 3.2 耐震設計構造
- 4 ガス設備(導管を除く。)
- 4.1 ガス設備に使用する材料
- 4.2 高圧ガス設備の耐圧性能及び強度
- 4.3 高圧ガス設備の気密性能
- 4.3.1 岩盤貯槽(特定設備)及びその他の地下設備の気密性能
- 4.3.2 高圧ガス設備(岩盤貯槽(特定設備)及びその他の地下設備を除く。)の気密 性能
- 5 計装・電気設備
- 5.1 計装設備
- 5.1.1 圧力計
- 5.1.2 液面計

- 5.1.3 界面計
- 5.2 電気設備
- 5.2.1 電気設備の防爆構造
- 5.2.2 保安電力等
- 5.2.3 静電気除去措置
- 6 保安·防災設備
- 6.1 安全装置
- 6.2 安全弁等の放出管
- 6.3 貯槽の配管に設けたバルブ
- 6.4 緊急遮断装置(貯槽配管)
- 6.5 インターロック機構
- 6.6 ガス漏えい検知警報設備
- 6.7 防消火設備
- 6.8 ベントスタック、プレアースタック
- 6.9 保安用不活性ガス等
- 6.10 通報措置
- 6.11 金属管の腐食防止措置
- 6.12 金属管の漏えい遮断措置
- 6.13 金属管地上部分の破損防止措置
- 7 水封機能を維持するための措置
- 8 その他
- 8.1 コンビナート製造者の連絡用直通電話

附属書 A(参考) 液化石油ガス岩盤貯槽について

附属書 B(参考) 検査周期(時期)を 10年とした理由について

附属書 C(参考) 腐食・劣化損傷による異常が生じていないことの確認の具体例

(フレキシブルチューブ類)

附属書 D(参考) 肉厚測定箇所選定についての参考資料

附属書 E(参考) 劣化損傷が発生するおそれがない設備の具体例

附属書 F(規定) 供用中探傷試験

附属書 G(規定) 運転状態の高圧ガス、圧力を用いて行う気密試験

附属書 H(参考) 水没部の金属管等の目視検査方法

附属書 I (参考) 金属管の選定について

1 適用範囲

本基準は、コンビナート等保安規則(以下「コンビ則」という。)の適用を受ける液化石油ガス岩盤備蓄基地¹⁾(以下「岩盤備蓄基地」という。)の製造施設の内、コンビ則第34条第1項に規定する特定施設に係る高圧ガス保安法(以下「法」という。)第35条の保安検査について適用する。

注 1)コンビ則第 2 条第 9 号の 2 に該当する液化石油ガス岩盤貯槽を有する岩盤備蓄基地の製造施設には、特定設備としての岩盤貯槽(以下「岩盤貯槽(特定設備)」という。)、その他の地下設備及び地上設備がある。

岩盤貯槽(特定設備)は貯槽本体である底水排水槽を除く貯槽空洞、プラグ及び第一フランジまでの配管竪坑内金属管(以下「金属管」という。)並びに貯槽本体の付属設備として配管竪坑、水封トンネル、水封ボーリング孔、地下水位観測孔、底水排水槽等で構成されている。

その他の地下設備として液化石油ガス払出ポンプ、金属管の腐食防止設備、 金属管の漏えい遮断設備等がある。

の他、液化石油ガス岩盤備蓄基地には、地上設備として金属管地上部分の破損防止設備(以下「防護構等」という。)、液化石油ガス配管、脱水設備等がある。

岩盤備蓄基地の概念図を6~ジに示す。岩盤貯槽(特定設備)の範囲については**附属書** A を参考にしても差し支えない。

なお、本基準に定めのない製造施設の検査項目及び方法については KHKS 0850-3 保安検査基準「コンピナート等保安規則関係 (スタンド及びコールド・エバポレータ関係を除く。)」による。

2 検査項目及び検査方法

2.1 一般

技術基準の適合状況(許可時に要求された性能を満足しているかどうか)について、II 保安検査の方法に示す検査項目に応じた方法又は当該方法に基づき実施された検査についての記録確認により行う。

2.2 テクノロジーの活用

2.1 の検査項目に応じた方法については、ドローン、ロボット、センシング、AI 等の技術を活用することにより、技術基準の適合状況を確認するための必要な情報 が得られると検査を実施する者が判断した場合には、これらの技術を活用しても差 し支えない。

なお、検査にドローン、ロボット、センシング、AI 等を活用する場合は、経済産業省が公開している次のガイドライン等を参考に、安全に配慮して検査を行わなければならない。

- ・プラントにおけるドローンの安全な運用方法に関するガイドライン
- ・プラント内における危険区域の精緻な設定方法に関するガイドライン
- ・プラント保安分野 AI 信頼性評価ガイドライン

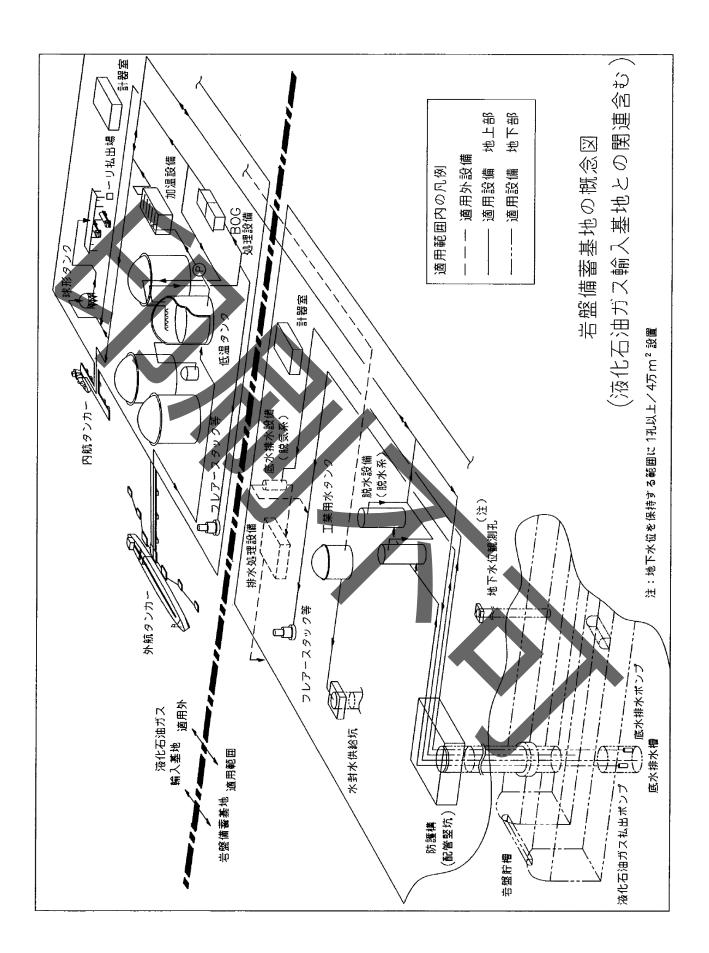
2.3 経済産業大臣特別認可等による基準に係る検査方法について

コンビ則第 54 条等の規定により経済産業大臣が認めた基準に係る保安検査の方法等であって、本基準を適用することが適当でない場合にあっては、本基準の内容に係わらず経済産業大臣が認めた適切な方法により行ってもよい。

3 技術基準条項と対応する検査方法の該当箇所

コンビ則の技術基準条項とそれに対応する検査方法の該当箇所の一覧を**表 1** に示す。

表 1ーコンビ則条項と対応する検査項目


	表 1ーコンビ則条項と対応する検査項目
コンビ則条項	検査項目
第5条第1項	
第1号	1.1 境界線・警戒標
第2号	2.1 保安距離
第3号	2.1 保安距離
第4号	該当せず(毒性ガス)
第5号	該当せず(可燃性ガス以外のガス)
第6号	2.1 保安距離
第7号	2.1 保安距離
第8号	2.1 保安距離
第9号	2.4.1 区分 面積
第 10 号	2.4.2 高圧ガン設備の位置・燃焼熱量数値
第 11 号	2.2 設備間距離
第 12 号	2.2 設備傳距離
第 13 号	2.2 設備間距離
第 14 号	2.3 火気取扱施設までの距離
第 15 号	該当せず(高圧ガス設備を除く)
第 16 号	4. <u>2</u> ガス設備に使用する材料
第 17 号	4.3 高圧ガス設備の耐圧性能及び強度
第 18 号	4.4 高圧ガス設備の気密性能
第 19 号	4.3 高圧ガス設備の耐圧性能及び強度
第 20 号	該当せず(特定液化石油ガスの高圧ガス設備を除く)
第 21 号	5.1.1 圧力計、6.1 安全装置
第 22 号	6.2 安全弁等の放出管
第 23 号	3.1 基礎
第 24 号	3.2 耐震設計構造
第 25 号	該当せず(特殊反応設備)
第 26 号	該当せず(特殊反応設備)
第 27 号	該当せず(特殊反応設備)
第 28 号	該当せず(50.2 ギガジュールを超える)
第 29 号	1.2 可燃性ガスの貯槽であることが容易にわかる措置
第 30 号(削除)	
第 31 号	該当せず(特定液化石油ガスを除く)
第 32 号	該当せず(地盤面上に設置する)
第 33 号	5.1.2 液面計
第 34 号	該当せず(可燃性ガス低温貯槽)
第 35 号	該当せず (液化石油ガス岩盤貯槽を除く)
第 36 号	該当せず(防液堤)

コンビ則条項	検査項目
第 37 号	-
第 38 号	該当せず(埋設貯槽)
第 39 号	該当せず(埋設貯槽)
第 40 号	該当せず(アルシン、五フッ化ヒ素、…)
第 41 号	該当せず (毒性ガス)
第 42 号	該当せず (アルシン等、…)
第 43 号	6.3 貯槽の配管に設けたバルブ
第 44 号	6.4 緊急遮断装置(貯槽配管)
第 45 号	1.3 バルブ等の操作に係る適切な措置
第46号	該当せず (除害のための措置)
第 47 号	5.2.3 静電気除去措置
第 48 号	5.2.1 電気設備の防爆構造
第 49 号	6.5 インターロック機構
第 50 号	5.2.2 保安電力等
第51号	2.5 滞留しない構造
第 52 号	該当せず (毒性ガス)
第 53 号	6.6 ガス漏えい検知警報設備
第 54 号	6.7 防消火設備
第 55 号	6.8 ベントスタック、フレアースタック
第 56 号	6.8 ベントスタック、フレアースタック
第 57 号(削除)	
第 58 号	該当せず(圧縮アセチレンガス)
第 59 号	該当せず(圧縮アセチレンガス)
第 60 号	該当せず(10メガパスカル以上の圧縮ガス)
第 61 号	2.6 計器室
第 62 号	6.9 保安用不活性ガス等
第 63 号	6.10 通報措置
第 64 号	該当せず(岩盤貯槽を除く)
第 64 号の 2 イ	5.1.3 界面計
第 64 号の 2 □	7 水封機能を維持するための措置
第 64 号の 2 / 第 64 日 6 8	6.11 金属管の腐食防止措置
第 64 号の 2 二	6.12 金属管の漏えい遮断措置
第64号の2ま	6.13 金属管地上部分の破損防止措置
第 65 号 (1.1 境界線・警戒標
第 65 号□	
第 65 号 第 65 号 2	該当せず(毒性ガス) 2.1 保安距離
第 65 号#	
第 65 号^	2.1 保安距離 該当せず(直射日光を遮るための措置)
第65号	3.5 滞留しない構造
第 65 号升	該当せず(ジシラン、…)
第 65 号》	該当せず(除害のための措置)

コンビ則条項	検査項目
第 65 号3	該当せず(二階建容器置場の構造)
第 65 号ル	6.7 防消火設備
第9条	該当せず (コンビナート製造事業所間の導管以外の導管)
第 10 条	該当せず (コンビナート製造事業所間の導管)
第 11 条	
第2項	8.1 コンビナート製造者の連絡用直通電話

4 検査の周期(時期)

保安検査は、II 保安検査の方法に示す周期(時期)により行う。ただし、製造施設の位置、構造及び設備並びに製造の方法等に関する技術基準の細目を定める告示(以下「告示」という。)第 14 条に規定する製造施設については、告示第 14 条の表の上欄に掲げる製造施設に応じ、同表下欄に掲げる期間により行う。

1 警戒標 等

1.1 境界線・警戒標

事業所の境界線、警戒標及び容器置場の警戒標に係る検査は目視検査とし、外観に腐食、損傷、変形、汚れ及びその他の異常¹⁾のないことを1年に1回目視(必要に応じて図面と照合して行うものをいう。以下同じ。)により確認する。

注 1) 取付位置、方向、記載事項等の確認を含む。

1.2 可燃性ガスの貯槽であることが容易にわかる措置

可燃性ガスの貯槽であることが容易にわかる措置に係る検査は目視検査とし、次による。

a) 標識の掲示による場合

外観¹に腐食、損傷、変形、汚れ及びその他の異常のないことを1年に1回目 視により確認する。

b) 防護構等への塗色、ガス名朱書又は標紙等貼付による場合 当該措置が明確、明瞭であることを1年に1回目視により確認する。 注1) 外観には、取付位置、方向、記載事項等を含む。

1.3 バルブ等の操作に係る適切な措置

バルブ等の操作に係る適切な措置に係る検査は目視検査及び作動検査とし、次による。

1.3.1 目視検査

a) 標示板等

外観¹⁾に腐食、損傷、変形、汚れ及びその他の異常のないことを**1**年に**1**回目視により確認する。

- b) 名称又は塗色等の表示及び流れ方向の表示 当該措置が明確、明瞭であることを1年に1回目視により確認する。
- c) 施錠、封印等 外観¹⁾に腐食、損傷、変形及びその他の異常のないことを**1年**に**1**回目視により 確認する。
- d) 操作用足場及び照明等

外観¹⁾に腐食、損傷、変形、汚れ及びその他の異常のないことを**1**年に1回目視により確認する。

注 1) 外観には、取付位置、方向、記載事項等を含む。

1.3.2 作動検査

照明等の点灯状況について、1年に1回作動(点灯)させて確認する。

2 保安距離・施設レイアウト 等

2.1 保安距離

- a) 保安距離に係る検査は距離測定とし、2.1.1 による。ただし、前回保安検査以降 に製造施設の設置位置及び保安物件の設置状況に変更のないことを記録により 確認した場合は、その確認をもって距離測定に代えてもよい。
- b) 保安距離の緩和のために設けられている障壁等の検査は目視検査とし、2.1.2 による。

2.1.1 距離測定

配管竪坑内面からの保安距離の確保状況について、1年に1回巻き尺その他の測定器具を用いた保安距離の実測による検査又は図面上で確認する。ただし、規定の距離を満たしていることが目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよい。

2.1.2 目視検査

外観¹に破損、変形及びこの他の異常のないことを1年に1回目視により確認する。 注 1外観には、位置、方向等を含む。

2.2 設備間距離

配管竪坑内面からの距離に係る検査は距離測定とし、設備間距離の確保状況について、1年に1回巻を尺その他の測定器具を用いた設備間距離の実測により確認する。ただし、規定の距離を満たしていることが目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよい。

なお、前回保安検査以降製造設備の設置状況に変更のないことを記録により確認した場合は、その確認をもって距離測定に代えてもよい。

2.3 火気取扱施設までの距離

火気取扱施設までの距離に係る検査は、次のいずれかの措置の内、該当する措置 について検査する。

- a) 配管竪坑内面から火気取扱施設までの距離に係る検査は距離測定とし、2.3.1 による。ただし、前回保安検査以降製造設備及び火気取扱施設の設置状況に変更のないことを記録により確認した場合は、その確認をもって距離測定に代えてもよい。
- b) 流動防止措置の内、防火壁、障壁、防火戸、網入ガラス及び二重軍に係る検査 は目視検査とし、2.3.2 による。
- c) 連動装置に係る検査は目視検査及び作動検査とし、2.3.2 及び2.3.3 による。

2.3.1 距離測定

配管竪坑内面からの距離の確保状況について、1年に1回巻き尺その他の測定器 具を用いた距離の実測により確認する。ただし、規定の距離を満たしていることが 目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよ い。

2.3.2 目視検査

外観 $^{1)}$ に腐食、損傷、変形及びその他の異常がないことを 1 年に 1 回目視により確認する。

注 1) 外観には、取付位置、方向等を含む。

2.3.3 作動検査

連動装置の機能について、1年に1回試験用標準ガスの使用により確実に作動することを確認する。

2.4 保安区画

2.4.1 区分·面積

保安区画の区分・面積に係る検査は目視検査及び図面確認とし、保安区画の区分の状況及び面積について、1年に1回目視及び図面により確認する。ただし、前回保安検査以降区分・面積に変更のないことを記録により確認した場合は、その確認をもって目視検査及び図面確認に代えてもよい。

2.4.2 高圧ガス設備の位置・燃焼熱量数値

保安区画内の高圧ガス設備の位置及び燃焼熱量の数値に係る検査は距離測定及び記録確認とし、次による。ただし、前回保安検査以降高圧ガス設備の位置及び燃焼熱量の数値に変更のないことを記録により確認した場合は、その確認をもって距離測定及び記録確認に代えてもよい。

2.4.2.1 距離測定17

隣接保安区画内の高圧ガス設備に対する距離の確保状況について、1年に1回巻き尺その他の測定器具を用いた距離の実測による確認又は図面上で確認する。ただし、規定の距離を満たとていることが目視又は図面により容易に判定可能な場合は、目視又は図面により検査とてもよい。

注 1) 液化石油ガス岩盤貯槽の起点は配管竪坑の内面である。

2.4.2.2 記録確認

保安区画内の高圧ガス設備の燃焼熱量の合計の数値が規定値以下であることを、 1年に1回記録により確認する。

2.5 滞留しない構造

可燃性ガス製造設備を設置する室¹⁾、可燃性ガス容器置場の滞留しない構造に係る検査は目視検査及び作動検査とし、次による。

注 1) 液化石油ガス岩盤貯槽は、防護構等が該当する。

2.5.1 目視検査

開口部、換気装置等の外観²⁾に破損、変形及びその他の異常のないことを**1**年に**1**回目視により確認する。

注²⁾ 外観には、取付位置、方向等を含む。

2.5.2 作動検査

換気装置の機能について、1年に1回作動させ、確実に作動することを確認する。

2.6 計器室

計器室の位置に係る検査は距離測定とし、2.6.1 による。ただし、前回保安検査 以降製造設備及び計器室の設置状況に変更のないことを記録により確認した場合 は、その確認をもって距離測定に代えてもよい。 計器室の構造(耐火構造、防火戸、二重扉等)に係る検査は目視検査とし、2.6.2 による。

2.6.1 距離測定

- a) 計器室と特殊反応設備等との距離について、1年に1回巻き尺その他の測定器 具を用いた距離の実測により確認する。ただし、規定の距離を満たしていることが目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよい。
- b) 可燃性ガス等の侵入防止措置として計器室入口の床面位置を地上より高くした場合にあっては、1年に1回巻き尺その他の測定器具を用いた床面位置の実測により確認する。ただし、規定の床面位置を満たしていることが目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよい。

2.6.2 目視検査

計器室出入口、窓ガラス等について破損、変形、その他の異常のないこと及び保 圧措置を講じている場合はその状況を1年に1回目視により検査する。

3 高圧ガス設備の基礎・耐震設計構造 等

3.1 基礎 1)

基礎に係る検査は記録(図面を含む。以下この細分箇条において同じ。)確認及び 目視検査とし、次による。ただし、記録確認については、前回保安検査以降地盤の 許容支持力等と地盤上の重量物の荷重との関係に変更のないことを記録により確認 した場合は、その確認をもって記録確認に代えてもよい。

注 ¹⁾ 配管、ポンプ、圧縮機、岩盤貯槽(特定設備)は、コンビ則第 **5** 条第 **1** 項第 **23** 号により対象から除かれている。

3.1.1 記録確認

地盤の許容支持力等と地盤上の重量物の荷重との関係について、1年に1回記録により確認する。

3.1.2 目視検査

基礎立ち上り部と基礎の緊結状況について、腐食、損傷、変形及びその他の異常のないことを1年に1回目視(目視での検査が可能な部分に限る。)により確認する。

3.2 耐震設計構造

耐震設計構造に係る検査は記録(図面を含む。以下この細分箇条において同じ。) 確認及び目視検査とし、次による。ただし、記録確認については、前回保安検査以降耐震設計上変更のないことを記録により確認した場合は、その確認をもって記録確認に代えてもよい。

3.2.1 記録確認

耐震設計構造に係る計算結果等について、1年に1回記録により確認する。

3.2.2 一般構造物の目視検査

基礎立ち上り部、ベースプレート、スカート、サドル、支柱及び本体接合部、アンカーボルト等について、腐食、損傷、変形及びその他の異常のないことを1年に1回目視(目視での検査が可能な部分に限る。)により確認する。

3.2.3 液化石油ガス岩盤貯槽 1)に係る構造物の目視検査

- a) 防護構等の基礎立ち上り部、支柱及び本体接合部、アンカーボルト等について、 腐食、損傷、変形及びその他の異常のないことを1年に1回目視(目視での検査 が可能な部分に限る。)により確認する。
- b) 目視可能な部分(気液界面近傍を含む。)の金属管、金属管サポート架構及び 配管竪坑等について、腐食、損傷、変形及びその他の異常のないことを 1 中に 1 回目視により確認する。
- c) 水没部の金属管、金属管サポート架構、配管竪坑等は、損傷、変形及びその他の異常のないことを 10 年 ²⁾以内に 1 回目視(目視での検査が可能な部分 ³⁾に限る。)により確認する。ただし、b)の目視検査で異常が認められた場合には、その都度確認する。
 - 注 1) 金属管を除く貯槽本体は、耐震設計構造に係る検査は適用しない。
 - 注 ²⁾10 年以内に 1 回の検査周期(時期)については 6.11 の金属管の腐食防止措置に合わせた。
 - 注³⁾ 目視検査の方法については附属書 H「水没部の金属管等の目視検査」を参考にしてもよい。

4 ガス設備(導管を除く。)

4.1 ガス設備に使用する材料

ガス設備に使用されている材料に係る検査は、1年に1回記録確認又は図面確認により行う。ただし、前回保安検査以降材料に変更のないことを記録により確認した場合は、その確認をもって記録確認又は図面確認に代えてもよい。

4.2 高圧ガス設備の耐圧性能及び強度

4.2.1 一般

高圧ガス設備の耐圧性能及び強度に係る検査は4.2.3の目視検査及び4.2.4の非破壊検査(肉厚測定を含む。)によるか4.2.5の耐圧試験等とし、耐圧性能及び強度に支障を及ぼす減肉、劣化損傷、その他の異常がないことを確認する。

この場合、配管にあっては、配管付属品を含めた相互に連結された配管系 ¹⁾で管理する。

注り配管系とは、直管部のみならず、エルボ、ティー、ボス等の継手部及び配管付属品(弁、ノズル、ストレーナ、フィルター等であって特定設備に該当しないもの)、並びにローディングアームを含め、相互に連結された系をいう。なお、配管系は、ほぼ同一の腐食環境下にあって類似の腐食形態を受ける範囲(腐食系)単位で管理する。

4.2.2 耐圧性能及び強度の確認を必要としない設備又は代替検査

4.2.2.1 耐圧性能及び強度の確認を必要としない高圧ガス設備

岩盤貯槽(特定設備)は、4.2 高圧ガス設備の耐圧性能及び強度に係る検査は適用しない。

4.2.2.2 内部からの検査が不可能な高圧ガス設備の代替検査

設備の大きさ、形状、構造等により内部の検査を行うことが不可能な次の設備 ¹⁾ にあっては、4.2.3 a)及び 4.2.4 b)の検査に代えて外部からの適切な検査方法(超音波探傷試験、放射線透過試験等)により、内部の減肉及び劣化損傷がないことを確認しなければならない。

- a) 配管
- b) 特定設備検査規則の機能性基準の運用について(令和元年 6 月 14 日 20190606 保局第 9 号)の別添 1 特定設備の技術基準の解釈(以下 [特定則例示基準別添 1] という。)第 45 条第 1 項(1)から(5)又は同別添 7 第二種特定設備の技術基準の解釈第 45 条第 1 項(1)から(5)までに掲げる特定設備
- c) 特定設備以外の圧力容器であって、b)の特定設備に準じるもの 注 ¹⁾これらの設備であって、点検口、接続フランジ開放部、接続する機器内部 等から当該設備の内部の減肉及び劣化損傷がないことを適切に確認する

ことが不可能なもの

4.2.2.3 検査を行うことが困難な箇所を有する高圧ガス設備の代替検査

設備の大きさ、形状、構造(二重管、ジャケット構造等)、他の設備との接合状況(溶接接合等)等により内部からも外部からも検査を行うことが困難な箇所²⁾を有する設備の当該箇所の検査にあっては、当該設備に接続されている同等の腐食及び劣化損傷が発生するおそれのある環境下の複数の検査箇所の検査結果をもとに、当該箇所の減肉及び劣化損傷のないことを確認する。ただし、この様な設備であっても、検査可能な箇所については可能な限り当該設備について検査を実施しなければなら

ない。

- **注**²⁾ 内部からも外部からも検査を行うことが困難な箇所とは、例えば、次の箇所をいう。
 - ・フルジャケット構造の二重管式熱交換器の内管部

4.2.3 目視検査

a) 内部の目視検査

高圧ガス設備の内部の目視検査は、次のとおりとする。

- 1) 原則として、高圧ガス設備の種類、材料等に応じて**表 2** に定める期間内に行う。
- 2) 1)にかかわりず、高圧ガス設備のうち、弁類及び動機器の内部の目視検査は、 分解点検・整備のための開放時³⁾に行う。
 - 注3 分解点検・整備のための開放時とは、摺動部の消耗品についてメーカーが 定める推奨交換時期又は運転時間・状況、日常点検結果、過去の分解点検 実績等を参考に定めた分解点検・整備の計画時期をいう。以下同じ。
- 3) 腐食性のない高圧ガスを取り扱う設備 4)(エロージョンによる減肉が発生する おそれがあるものを除く。) については、内部の目視検査は不要とする。
 - 注4) 腐食性のない高圧ガスを取り扱う設備とは、次に掲げる設備であって、不 純物や水分の混人等による腐食や劣化損傷が生じないよう管理されてい るものをいう。以下同じ。
 - ・腐食性のない不活性ガス設備
 - ・フレキシブルチューブ類(高圧ガス設備に設置される金属、ゴム、樹脂製等の可とう管をいい、断面の形状を変化させずに金属製の配管等を螺旋状又はループ状に加工して可とう性を確保したものを除く。以下同じ。)

なお、この場合の腐食や劣化損傷が生じないよう管理されている例として 附属書 C を参考に示す。

- b) 外部の目視検査
 - 1) 高圧ガス設備の外部(断熱材等で被覆されているものにあってはその外面)の 目視検査 ⁵⁾は、**1** 年に **1** 回行う。
 - 注 5) 外部の目視検査については、**附属書 D** 肉厚測定箇所選定についての参 考資料 **b**)項を参考にしてもよい。
 - 2) 1)にかかわらず、岩盤貯槽のその他の地下設備の外部の自視検査は、分解・ 点検整備のための開放時に行う。
- c) フレキシブルチューブ類の目視検査
 - a) 及び b) の他、フレキシブルチューブ類については、設置状況が適切に維持されていること (使用場所・目的等に応じた適切な製品の選定、設置したフレキシブルチューブ類に無理な曲げ、捻れがないこと等)を、1年に1回目視により確認する 6)。

また、充塡枝管、充塡ホース等頻繁に取付け・取外しを行う箇所に用いられるフレキシブルチューブ類のうち、金属製のものにあっては、ブレード部の破損(切断、ほぐれ等)及びブレード部と継手部との接続部における割れ・膨れ等の異常のないことを、ゴム、樹脂製のもの(金属との多層構造のものを含む。)にあっては、補強層の露出、外層のき裂・膨れ、折れ、つぶれ、金属部分との接続部

における割れ・膨れ等の異常のないことを、1年に1回確認する。

- **注** 6) 設置状況が適切に維持されていることの確認については、例えば、次のものを参考にしてもよい。
 - ・製造メーカーの指定する条件
 - ・JIS 規格に適合するものにあっては、当該 JIS による条件
 - ・JLPA209 金属フレキシブルホース基準(2010)

4.2.4 非破壊検査

a) 肉厚測定

高圧ガス設備が十分な肉厚を有していることを確認するため、肉厚測定を1年に1回実施する。ただし、次の設備にあっては、1)又は2)に掲げる時期に実施する。この場合、肉厚測定箇所7)は、使用環境及び目視検査の結果を十分考慮した上で選定しなければならない。

なお、フレキンブルチューブ類(エロージョンによる減肉が発生するおそれがあるものを除く。)のうち、構造、材質等により肉厚測定の実施が困難なもの 8) については、腐食による異常が生じていないことを確認した場合、肉厚測定は不要とする。この場合、腐食による異常が生じていないことの確認については 附属書 C を参考にしてもよい。

- 注 7) 測定箇所の選定については、**附属書 D** 肉厚測定箇所選定についての参考 資料を参考にしてもよい。
- 注⁸⁾ ブレードで覆われた薄肉のベローズ部を有する場合や、ゴム、樹脂、金属 等による多層構造のもの等をいう。
- 1) 過去の実績、経験等により内部の減肉のおそれがないと評価可能な弁類(配管系から除外される圧力容器に直結されたもの(圧力容器の直近に設けられた弁をいう。))及び動機器(ポンプ、圧縮機等の回転機械をいう。また、範囲は、ケーシング、シリンダー、ノズルなど動機器本体のみとし、連結されたスナッバー、配管、小型容器などの付属機器は含まない。)については、分解点検・整備のための開放時の目視検査で異常が認められたとき
- 2) 腐食性のない高圧ガスを取り扱う設備(フレキンブルチューブ類*及びエロー ジョンによる減肉が発生するおそれがあるものを除く。)については、外部の 目視検査で減肉が認められたとき
 - * 4.2.3 a) 3)の注 4)において、腐食性のない高圧ガスを取り扱う設備としてフレキシブルチューブ類も含むものとして定義しているが、ここでいう腐食性のない高圧ガスを取り扱う設備はフレキシブルチューブ類を除くものとする。
- b) 肉厚測定以外の非破壊検査

肉厚測定以外の非破壊検査(磁粉探傷試験、浸透探傷試験、超音波探傷試験、放射線透過試験、渦流探傷試験等)は、高圧ガス設備の内部について、原則として、設備の種類、材料等に応じて表2に定める期間内に行う。ただし、動機器及び配管系から除外される圧力容器に直結された弁類(4.2.4 a) 1)の弁類)は、分解点検・整備のための開放時に行う。この場合、当該高圧ガス設備の減肉及び劣化損傷の検出に対して適切な検査方法を用いて行い、非破壊検査箇所は、使用環境及び目視検査の結果を十分考慮のうえ選定しなければならない。

なお、次の設備にあっては、1)、2)又は3)としてもよい。

1) 腐食性のない高圧ガスを取り扱う設備(エロージョンによる減肉が発生する

おそれがあるものを除く。)については、非破壊検査は不要とする。

- 2) 劣化損傷が発生するおそれがない設備 ⁹⁾については、非破壊検査は不要とする。
 - **注** 9) 劣化損傷が発生するおそれがない設備とは、流体及び材料の組み合わせ又は使用条件等によって発生する次の劣化損傷を受けない設備をいう。
 - ・割れ:応力腐食割れ(塩化物応力腐食割れ等)、疲労(疲労、熱疲労等)、クリープ(クリープ破壊等)等

なお、劣化損傷が発生するおそれがない設備の評価に際しては、**附属書** E 及び KHK/PAJ/JPCA S 0851(2022)高圧ガス設備の供用適性評価に基づく耐圧性能及び強度に係る次回検査時期設定基準の附属書 4 損傷の種類と特徴(参考)を参考にしてもよい。

3) 内部の状況を外部から代替検査が可能な設備(附属書 F 参照)については、外部から適切な非破壊検査方法で検査する。

表 4 一高圧ガス設備の用放快性の局期			
設備の種類	使用材料	期間 a)	
貯槽以外の 高圧ガス設	内容物の種類、性状及び温度 を勘案して腐食その他の材 質劣化を生じるおそれのな い材料的	完成検査を行った日又は保安検査 実施日から3年以内	
備	その他材料	完成検査を行った日から2年以内 の後保安検査実施日から3年以内	

表 2 一高圧ガス設備の開放検査の周期

- 注 a) 期間は、減肉又は劣化損傷の状況に応じて短縮しなければならない。
 - なお、変更の工事に際し完成検査を要しない高圧ガス設備に係る開放検査の 起点については、次のとおりとする。
 - ・コンビ則第 14 条の軽微な変更の工事に基づくものの場合、当該軽微な変更の工事完了日から
 - ・コンビ則第 17 条の完成検査を要しない変更の工事に基づくものの場合、 当該変更の工事の完了日から
 - b) 4.2.4 b) 2)の「劣化損傷が発生するおそれがない設備」は、肉厚測定以外の非破壊検査を不要とするための条件で、腐食、減肉を考慮していないのに対し、本表の「内容物の種類、性状及び温度を勘案して腐食その他の材質劣化を生じるおそれのない材料」は、腐食、減肉も考慮した上で評価、判断しなければならない。
 - c) 同一配管系内を一部取り替える場合において、取替え前と同等の運転条件で使用される場合であって、当該取替え部位について、3年以上問題なく使用した実績があり、既存設備と同一形状、同一材料での取替えの場合、取替え部分の開放検査の期間は、取替え箇所の既存配管系と同じとしてもよい。

4.2.5 耐圧試験等

a) 耐圧試験

4.2.3 a)の内部の目視検査、4.2.4 a) の肉厚測定又は 4.2.4 b)の肉厚測定以外の非破壊検査の適用が困難な場合又は余裕のある肉厚、安全率となっていて、耐圧試験を行うことによって過大な応力が負荷されるおそれのない高圧ガス設備については、常用の圧力の 1.5 倍(第二種特定設備にあっては 1.3 倍)以上の圧力で水その他の安全な液体を使用して行う耐圧試験(液体を使用することが困難であると認められるときは常用の圧力の 1.25 倍(第二種特定設備にあっては 1.1 倍)以上の圧力で空気、窒素等の気体を使用して行う耐圧試験)を 1 年に 1 回実施すれば 4.2.3 a)、4.2.4 a)及び 4.2.4 b)の検査は不要とする。

なお、耐圧試験は、設備及び試験の安全性を十分に配慮した上で行わなければならない。

b) 溶接補修を行った場合の耐圧試験の適用等について

保安検査の結果、減肉、割れ等の欠陥が発見され、当該欠陥が表3左欄に掲げる欠陥の箇所及び同表中欄に掲げる点数に、表4左欄に掲げる欠陥の長さ又は長径に応じ、同表の右欄に掲げる点数を乗じて得た点数の和が6点(溶接補修を行った場合の欠陥の点数は累計し、耐圧試験を実施した時点で累計されていた点数は0点に戻る。)を超え溶接補修した場合には、耐圧試験を実施し、さらに1年以上2年以内に開放検査を実施し割れ等がないことを確認するものとする。ただし、管台、マンホール部等の取付部に使用される引張強さが570N/mm²未満の炭素鋼(母材)及び当該炭素鋼(高張力鋼にあっては、溶接後に炉内で応力除去焼鈍したものに限る。)の溶接部の欠陥の溶接補修については、耐圧試験及び1年以上2年以内の開放検査を省略してもよい。

表 3一欠陥の筒所、仕上がり深さに応じた点数

欠陥の箇所	グラインダー加工等による仕上がりの深さ	点数
管台及びマンホール部	深さにかかわらず	1
胴板及び鏡板	3mm 又は板厚の 30%に相当する深さのうちいずれか小さい値以下	1
	3mm 又は板厚の 30%に相当する深さのうちいずれか小さい値を超え 4mm 以下 a)	2
注 a) 4mm を超える欠陥	は、6点を超える欠陥として評価する。	

表 4一欠陥の長さ又は長径に応じた点数

欠陥の長さ又は長径	点数	
10mm 以下	1	
10mm を超え 20mm 以下	2	
20mm を超え 30mm 以下 ^{a)}	3	
注 a) 30mm を超える欠陥は、6 点を超える欠陥		
として評価する。		

4.3 高圧ガス設備の気密性能

4.3.1 岩盤貯槽(特定設備)及びその他の地下設備の気密性能

岩盤貯槽(特定設備)の気密性能に係る検査は、当該高圧ガス設備の運転状態の圧力で、運転状態の高圧ガスを用いて 1 年に 1 回漏えい等の異常がないことを 4.3.1.1 に掲げる方法により確認する。その他の地下設備については、4.3.1.2 に掲げる方法により確認する。

4.3.1.1 岩盤貯槽 (特定設備)

漏えい等の異常のないことを次により確認する。

- a) 貯槽内圧の状況 ¹⁾
- b) 金属管第 フランジへの発泡液の塗布
- c) 配管竪坑内の水面の状況(連続した気泡の有無)
- d) 貯槽液位の異常な低下
 - 注判 貯槽内圧が常用圧力以下で安定していることを確認する。

4.3.1.2 その他の地下設備

高圧ガス設備の開放(分解点検・整備、清掃等のために行う開放を含む。)時に行う。原則として、当該高圧ガス設備の常用の圧力以上の圧力²⁾で、空気、窒素等の危険性のない気体を用いて気密試験を実施する。

注 2) 検査の状況によって危険がないと判断される場合は、当該高圧ガス設備の常用の圧力以上の圧力で運転状態の高圧ガスを用いて気密試験を実施してもよい。

ただし、運転状態の高圧ガスを用いることが適当な場合には、当該高圧ガス設備の運転状態の圧力で、運転状態の高圧ガスを用いて気密試験を実施してもよい(附属書 G 参照)。

4.3.2 高圧ガス設備(岩盤貯槽(特定設備)及びその他の地下設備を除く)の気密性能 高圧ガス設備の気密性能に係る検査は 4.3.2.1~4.3.2.3 に掲げる気密試験とし、1 年に 1 回当該高圧ガス設備から漏えい等の異常がないことを確認する。

4.3.2.1 気密試験

漏えい等の異常がないことを確認する方法として、発泡液の塗布、ガス漏えい検知器等を用いた測定又は放置法漏れ試験があり、設備の状況、検査条件等を考慮して、これらの方法の内最適な試験(必要に応じ組み合わせて)を採用して気密性能を確認しなければならない。

なお、放置法漏れ試験は、採用に当たって試験体の温度変化及び圧力変化の影響 を補正しなければならない。

4.3.2.2 高圧ガス設備を開放した場合の気密試験

高圧ガス設備を開放(分解点検・整備、清掃等のために行う関放を含み、内容物を放出する場合をいう。4.3.2.3 において同じ。)した場合にあっては、原則として、当該高圧ガス設備の常用の圧力以上の圧力で、空気、窒素等の危険性のない気体 ¹⁾ を用いて気密試験を実施する。

注 1) 検査の状況によって危険がないと判断される場合は、当該高圧ガス設備の常用の圧力以上の圧力で、運転状態の高圧ガスを用いて気密試験を実施してもよい。

ただし、運転状態の高圧ガスを用いることが適当な場合には、当該高圧ガス設備 の運転状態の圧力で、運転状態の高圧ガスを用いて気密試験を実施してもよい(附属

書 G 参照)。

4.3.2.3 高圧ガス設備を開放しない場合の気密試験

当該高圧ガス設備の運転状態の圧力で、運転状態の高圧ガス又は空気、窒素等の危険性のない気体を用いて気密試験を実施する。

5 計装・電気設備

5.1 計装設備

5.1.1 圧力計

高圧ガス設備の圧力計に係る検査は目視検査及び精度検査とし、5.1.1.1 及び 5.1.1.2 による。

5.1.1.1 目視検査

圧力計に破損、変形及びその他の異常がないことを、**2**年に**1**回目視により確認する。

5.1.1.2 精度検査

圧力計精度確認用器具 ¹⁾を用いて精度を測定し、圧力計の誤差があらかじめ定められた許容差以内であることを **2** 年に **1** 回確認する。

許容差は次のいずれかを満足すること。

- a) 該当するJIS規格に定める許容差又はこれと同等若しくは精度の高いもの
- b) 当該圧力計の1/2日量(一定間隔をもって断続的に指示又は記録をする装置を有する圧力計²⁾の場合にあっては通常用いられる測定範囲の最大値の5/1000)
 - 注²⁾ 一定間隔を持って断続的に指示又は記録をする装置を有する圧力計とは、 検出部、変換器部、DCS、記録計等の指示又は記録を行う装置により構 成された圧力計測装置の検出部のことをいう。

5.1.2 液面計

液化石油ガス岩盤貯槽に設けられた液面計に係る検査は目視検査とし、外観¹⁾に 破損、変形及びその他の異常のないことを1年に1回目視により確認する。

注 1) 外観には、位置、方向等を含み、地上部で日視可能な部分に限定して実施する。

5.1.3 界面計

液化石油ガス岩盤貯槽に設けられた界面計に係る検査は目視検査及び作動検査と し、次による。

5.1.3.1 目視検査

外観¹⁾に破損、変形及びその他の異常のないことを**1**年に**1**回目視により確認する。 **注** ¹⁾ 外観には、位置、方向等を含み、地上部で目視可能な部分に限定して実施 する。

5.1.3.2 作動検査

界面計は、作動範囲を超えた場合に警報装置を作動させ安全性を確保しているため、1年に1回以上検知警報設備等が正常に作動²⁾することを確認する。ただし、検知警報設備等の作動状況が記録で確認可能な場合は、記録確認に代替してもよい。

注²⁾ 界面の作動範囲を超えさせて、検知警報装置が作動することを確認する。

5.2 電気設備

5.2.1 電気設備の防爆構造

可燃性ガスの高圧ガス設備に設けられた電気設備の防爆構造に係る検査は目視検

査とし、外観 1 に破損、腐食、変形及びその他の異常 2 がないことを 1 年に 1 回目 視により確認する。

- 注 1) 外観には、取付位置、構造等を含む。
- 注²⁾ ボルト緩み、腐食、異物衝突等による電気設備本体、端子箱の合わせ面等 の破損、変形等をいう。

5.2.2 保安電力等

保安電力等に係る検査は目視検査、図面確認及び作動検査とし、5.2.2.1、5.2.2.2 及び 5.2.2.3 による。ただし、図面確認については、前回保安検査以降変更がないことを記録により確認した場合は、その確認をもって図面確認に代えてもよい。また、岩盤貯槽(特定設備)の水封機能を維持するための措置に係る設備のうち、底水排水ポンプの保安電力等を余裕空間で対応する場合は測定とし、5.2.2.4 による。

5.2.2.1 目視検査

保安電力等について、次に掲げる事項を1年に1回目視により確認する。

- a) 設備の状態
 - 1) 電源装置

状態表示灯、電圧・周波数、スイッチ類の位置、各部の温度や異音の有無等 を確認する。

- 2) 停止待機中のエンジン駆動発電機等 表示灯、燃料や潤滑油のレベル、スイッチ類の状態等について確認する。
- 3) 空気又は窒素だめを用いる設備、ワイヤー等により駆動する緊急遮断装置 外観に腐食、損傷、変形及びその他異常のないことを確認する。
- 4) 通常電池を使用する設備 (予備電池又は充電式電池のもの) 外観に腐食、損傷、変形及びその他異常のないことを確認する。また、予備 電池の必要個数、充電状況等を確認する。
- b) 周囲の状態

保安電力等が作動した時に運転に支障となる物がないことを確認する。

5.2.2.2 図面確認

保安電力等について、次に掲げる事項を1年に1回図面により確認する。

- a) 自動又は遠隔手動によって直ちに安全側に作動する設備 自動又は遠隔手動によって直ちに安全側に作動する機構を備えていることを図面 により確認する。
- b) 常時必要水量を必要な水頭圧をもつタンク又は貯水池等に保有する設備(ボンプを使用しない場合)

必要な水頭圧を保有する構造であることを図面により確認する

5.2.2.3 作動検査

停電等により設備の機能が失われることのないよう、直ちに保安電力等に切り替わることについて、次に掲げる事項を作動検査により 1 年に 1 回確認する。

a) 保安電力

模擬の停電状態にして作動させ、確実に保安電力が供給されることを確認する。 また、買電2系統受電や買電と自家発電との組合せ受電設備にあっては、保安電力が給電されていることを電圧確認で行う。

b) 空気又は窒素だめを用いる設備 確実に空気又は窒素が供給されることを確認する。ただし、圧縮機等を使用して

空気又は窒素だめに供給する場合にあっては、模擬の停電状態にして作動させ、 確実に空気又は窒素が供給されることを確認する。

c) 自動又は遠隔手動によって直ちに安全側に作動する設備及びワイヤー等で駆動 する緊急遮断装置

確実に作動することを確認する。

5.2.2.4 測定

底水排水ポンプの保安電力等を余裕空間で対応する場合は、貯槽の気相部の容積 を測定し、規定の容積以上あることを 1 年に 1 回確認する。

5.2.3 静電気除去措置

可燃性ガスの製造設備に設けられた静電気除去措置に係る検査は目視検査及び接地抵抗値測定とし、次による。

5.2.3.1 目視検査

外観に腐食、破損、変形及びその他の異常¹⁾がないことを**1**年に**1**回目視により確認する。

注 1) 静電気除去措置としての接地極、配管や塔槽類の接地ピース、避雷針、ボンディング用接続線等及びそこに接続する接地線等について、取付忘れ、接続の状態並びに締付部での割れや破断がないことを確認する。

5.2.3.2 接地抵抗值測定

接地抵抗値について、1年に1回接地抵抗測定器具を用いた測定により確認する。

6 保安・防災設備

6.1 安全装置

高圧ガス設備の安全装置に係る検査は目視検査及びバネ式安全弁等作動検査を行うことが可能な装置について行う作動検査とし、次による。

6.1.1 目視検査

外観に腐食、損傷、変形及びその他の異常のないことを 1年(表 5 に掲げるバネ式 安全弁については、その種類に応じた期間)に 1回目視により確認する。

6.1.2 作動検査

バネ式安全弁等を設置した状態又は取り外した状態で、作動検査用器具若しくは 設備を用いた作動検査を 1 年(表 5 に掲げるバネ式安全弁については、その種類に応 じた期間)と 1 回行う。

表 5-バネ式安全弁の目視検査及び作動検査期間

バネ式安全弁の種類 a)	検査の期間
日本工業規格 B8210(1994)蒸気用及びガス用ばね安全弁(揚	
程式でリフトが昇座口の径の 1/15 未満のもの、呼び径が 25	2年
未満のソフトシート形のもの及び以下に掲げるものを除	2 4
<.)	
日本工業規格 B8210(1994)全量式の蒸気用及びガス用ばね	
安全弁(呼び径が 25 未満のソフトシート形以外のもので	4年
あって法第35条第1項第2号の認定に係る特定施設に係る	4 +
ものに限る。)	

- 注a) 日本工業規格 B8210(1994)蒸気用及びガス用ばね安全弁では、次に示すものは適用範囲外とされている。
 - ・液体の圧力を開放するために供するもの。
 - ・設定圧力 0.1MPa{1kgf/cm²}未満及び 42.9MPa{429kgf/cm²}を超えるもの。
 - ・車両用など特殊構造のもの。
 - ・圧力調整に用いるアンローダに類するもの。
 - ・弁座口の径が 15mm 未満のもの。

6.2 安全弁等の放出管

高圧ガス設備の安全弁又は破裂板の放出管に係る検査は目視検査及び測定とし、 次による。ただし、測定については、前回保安検査以降放出管に変更のないことを 記録により確認した場合は、その確認をもって測定に代えてしよい。

6.2.1 目視検査

外観に腐食、損傷、変形及びその他の異常のないこと 1 を 1 年に 1 回目視により確認する。

注 ¹⁾ 開口部位置付近の状況確認を含む。

6.2.2 測定

放出管の開口部の位置を、1年に1回巻き尺その他の測定器具を用いた実測により確認する。ただし、規定の高さを満たしていることが目視又は図面により容易に判定可能な場合は、目視又は図面により確認してもよい。

6.3 貯槽の配管に設けたバルブ

貯槽の配管に設けたバルブに係る検査は目視検査及び作動検査とし、次による。

6.3.1 目視検査

外観に腐食、破損、変形及びその他の異常がないことを 1 年に 1 回目視により確認する。

6.3.2 作動検査

バルブの作動について、1年に1回良好に作動¹⁾することを検査する。

注 1) 良好に作動とは、弁軸等の固着がないことを確認するための検査であり、 必ずしも弁を全域作動させることを要しない。

6.4 緊急遮断装置(貯槽配管)

貯槽の配管に講じた液化ガスが漏えいしたときに安全に、かつ、速やかに遮断するための措置に係る検査は目視検査、作動検査及び弁座の漏れ検査とし、次による。

6.4.1 目視検査

緊急遮断に係る設備が、緊急遮断に支障の無い状態であることを 1年に 1回目視により確認 11 する。

注1) 設備の腐食、損傷、変形、汚れ、シグナルランプ等の表示を確認する。

6.4.2 作動検査 (

作動検査は、作動域全域について遠隔操作にて正常に作動することを1年に1回確認する。ただし、弁座漏れ検査を行わない年の検査においては、部分作動検査(弁を全域動作させるものでなく、弁軸等の固着が無いことを確認する検査)にて代替してもよい。

6.4.3 弁座漏れ検査

弁座漏れ検査は、保安上支障のない漏れ量以下であることを、**5**年以内の間に実施する。

6.5 インターロック機構

可燃性ガスの製造設備又はこれらの製造設備の計装回路のインターロック機構に係る検査は目視検査及び作動検査とし、次による。

6.5.1 目視検査

外観に破損その他の異常がないことを1年に1回目視により確認する

6.5.2 作動検査

計装回路のインターロック機構が正常に機能することを**1年に1**回作動検査¹⁾により確認する。ただし、運転状態で行う検査においては、模擬信号により検査する。また、操作端については、操作端への出力が正常に出力されていることを確認する。

注 ¹⁾ 停止中のインターロック機構の作動検査は、インターロックに組み込まれている遮断弁の作動検査を含む。また、運転中のインターロック機構の作動検査とは、模擬信号によりインターロック機構を動作させ操作端への出力が正常に出力されているかを確認する検査であり、インターロックに組み込まれている遮断弁及び併用されている調節弁の実作動検査は含まない。

6.6 ガス漏えい検知警報設備

可燃性ガスの製造施設におけるガス漏えい検知警報設備に係る検査は目視検査及び作動検査とし、次による。

6.6.1 目視検査

外観に腐食、損傷、変形及びその他の異常がないことを 1 年に 1 回目視により確認する。

6.6.2 作動検査

検知警報設備について、**1**年に**1**回その検知及び警報に係る作動検査を次のとおり行い、正常に作動することを確認する。

- a) 試験用標準ガスにより実施する。
- b) 検知警報設備の発信に至るまでの遅れは、警報設定値の 1.6 倍の濃度において、 通常 30 秒以内でなければならない。なお、検知警報設備の構造上又は理論上 これより遅れる特定のガスについては 60 秒以内でなければならない。
- c) 取扱説明書又は仕様書に記載された点検事項(表示灯・指示計の指針・検知部の 状態、サンプリング系の状態等)を確認する。

6.7 防消火設備

防火設備に係る検査は目視検査及び作動検査とし、6.7.1 及び 6.7.2 による。 消火設備に係る検査は目視検査とし、6.7.1 による。

6.7.1 目視検査

外観に腐食、破損、変形及びその他の異常がなく、使用可能な状態となっていることを1年に1回目視により確認する。

6.7.2 作動検査

防火設備の機能について、1年に1回作動検査により確認する。ただし、作動させることにより被対象設備へ悪影響を及ぼす可能性がある場合 1)は、当該措置について、次のa)a)a)全てを確認することにより空気等安全な気体を用いた通気テストにより確認してもよい。

- a) 用役の保有状況若しくは供給を確実に受けられることを確認する
- b) 対象設備直近の一次弁まで通水作動させ、当該措置の直近弁一次側に適正な圧 が確保されていることを確認する。
- c) 散水設備本管内の流体の適当量のブローを行い、錆等の詰まりがないことを確認する。
- d) 出口ノズル及び給水配管に異常がないことを確認する。
 - 注 1) 作動させることにより被対象設備へ悪影響を及ぼす可能性がある場合とは、水利として海水を使用している場合や冷却効果により被対象設備の保安に影響を与える(漏えい等)可能性のある場合等をいう。

6.8 ベントスタック、フレアースタック

ベントスタック及びフレアースタックに係る検査は、目視検査、図面確認及び記録確認とし、次による。ただし、図面確認及び記録確認については、前回保安検査 以降ベントスタック及びフレアースタックに変更がないことを記録により確認した 場合は、その確認をもって図面確認及び記録確認に代えてもよい。

6.8.1 目視検査

ベントスタックの着火防止措置、ドレン滞留防止措置等について、劣化、損傷及びその他の異常がないことを1年に1回目視により確認する。ただし、運転状態で行う検査においては、ドラムの液面管理等により確認する。

フレアースタックのパイロットバーナー、逆火防止措置等について、劣化、損傷、その他の異常がないことを1年に1回目視により確認する。ただし、運転状態で行う検査においては、DCSによる温度監視、監視カメラ、水封式ドラムの液面管理等により確認する。

6.8.2 図面確認

ベントスタックの高さ、放出口の位置及びフレアースタックの位置、高さについて、**1**年に**1**回図面により確認する。

6.8.3 記録確認

フレアースタックの燃焼能力及び材質等について、1年に1回記録により確認する。

6.9 保安用不活性ガス等

可燃性ガスの製造をする特定製造事業所の保安用不活性ガス又はスチームの保有 状況若しくは供給を確実に受けるための措置に係る検査は目視検査とし、1年に1 回措置の状況を確認する。

6.10 通報措置

緊急時に必要な通報を速やかに行うための措置に係る検査は目視検査及び作動検査とし、次による。

6.10.1 目視検査

通報設備の外観について、破損、変形及びその他の異常がないことを 1 年に 1 回 目視により確認する。

6.10.2 作動検査

通報設備について、設備が正常に機能することを1年に1回確認する

6.11 金属管の腐食防止措置

腐食防止措置として電気防食を採用した場合の検査は、目視検査、非破壊検査及び電位測定とし、6.11.1、6.11.2 及び 6.11.3 による。

6.11.1 目視検査

a) 腐食防止措置に係る設備の目視検査

腐食防止措置に係る設備の外観(取り付け位置を含む)に腐食、損傷、変形及びその他の異常¹⁾がないことを**1**年に**1**回目視により確認する。

b) 金属管の気液界面近傍の目視検査

金属管の気液界面近傍の外面における外観に腐食、損傷、変形及びその他の異常がないことを1年に1回目視により確認する。なお、金属管の気液界面近傍における外観に異常が見られた場合は、金属管の水没部の外面についても水中ビデオカメラ等により確認する。

c) 金属管水没部の目視検査

配管竪坑内金属管の水没部における外面に腐食、損傷、変形及びその他の異常がないことを **10** 年 ²⁾以内に **1** 回目視 ³⁾により確認する。

- **注** ¹⁾ 目視で検査可能な部分に限定して実施する。
- 注²⁾ 10 年以内に 1 回の検査周期(時期)については**附属書** B による。
- 注 3) 目視検査の方法については附属書 H「水没部の金属管等の目視検査」を 参考にしてもよい。

6.11.2 非破壊検査

金属管の腐食による減肉及び欠陥を適切な非破壊検査方法で 10 年以内に 1 回検査する。この場合、検査する金属管は設置環境及び使用環境等を十分考慮した上で選定 1)しなければならない。

注 1) 金属管の選定については附属書 | 「金属管の選定について」を参考にしても

6.11.3 電位測定

金属管の電位を1年に1回測定1)し、確認するとともに、電位の維持状況を記録²⁾により確認する。なお、電位に異常があった場合は、金属管水没部の目視検査を行い確認する。

- 注1) 測定は鉛直方向に電位分布の確認が可能な方法で測定する。
- 注²⁾ 年間を通して電位が防食電位範囲内に維持されていることの確認可能な記録。

6.12 金属管の漏えい遮断措置

金属管の破損により液化石油ガスが漏えいしたときに安全に、かつ、速やかに遮断するための措置としてのフェールセーフバルブに係る検査は目視検査、作動検査及び漏れ検査とし、6.12.1、6.12.2 及び 6.12.3 による。

6.12.1 目視検査

フェールセーフバルブの地上部設備の外観¹⁾に異常がないことを1年に1回目視により確認する。

注 1) 外観には地上部の油圧発生設備等の取付位置、構造を含み、目視で検査可能な部分に限定して実施する。

6.12.2 作動検査

作動検査は、作動域全域について遠隔操作にて正常に作動することを 1 年に 1 回確認する。ただし、漏れ検査を行わない年の検査においては、フェールセーフバルブの作動油圧の圧力を低下させた後に、金属管上部を開放し金属管上部の圧力が低下することを確認することにより作動検査の代替としてもよい。

6.12.3 漏れ検査

漏れ検査は、保安上支障のない漏れ量以下であることを5年以内に1回確認する。

6.13 金属管地上部分の破損防止措置

金属管地上部分の破損を防止するための措置に係る検査は目視検査とし、設備 ¹⁾ の外観 ²⁾に破損、変形、劣化損傷等の異常がないことを **1**年に **1**回目視により確認する。

- **注** ¹⁾ 破損を防止するための措置に係る設備には、防護構、つり荷の落下防止器具 (常設の器具がある場合)、車両止めがある。
- 注²⁾ 外観には取付位置、構造を含み、目視で検査可能な部分に限定して実施する。

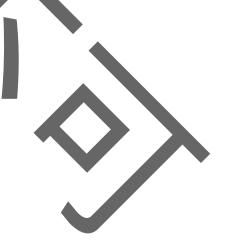
KHK/JOGMEC S 0850-8 (2024)

7 水封機能を維持するための措置

水封機能を維持するための措置に係る設備の検査は目視検査及び作動検査とし、7.1及び7.2による。水封機能の検査は、7.3による。

7.1 目視検査

水封機能を維持するための措置に係る設備の外観に腐食、損傷、変形及びその他の異常がないことを 1 年に 1 回目視により確認する。


7.2 作動検査

水封水供給ポンプ及び底水排水ポンプの機能について、1年に1回作動させ、確実に作動することを確認する。

7.3 水封機能の検査

水封機能が維持されていることを下記項目について1年に1回確認する。

- a) 地下水位が限界地下水位以上であることを確認する。
- b) 湧水量が設計湧水量以下であることを確認する。
- c) 間隙水圧が管理値以上であることを確認する。

8 その他

8.1 コンビナート製造者の連絡用直通電話

関連事業所の事務所間及び作業場間の緊急連絡の用に供する直通電話等に係る検査は目視検査及び作動検査とし、次による。

8.2 目視検査

外観に破損、変形及びその他の異常がないことを1年に1回目視により確認する。

8.3 作動検査

設備が正常に使用可能なことを1年に1回使用して確認する。

附属書 A (参考)

液化石油ガス岩盤貯槽について

コンビ則第2条第1項第9号の2による液化石油ガス岩盤貯槽は、「液化石油ガスを貯蔵するための貯槽(当該貯槽の内面の零パスカルを超える圧力を受ける部分に岩盤を使用するものに限る。)であって、当該貯槽の周囲に作用する水圧により液化石油ガスの漏えいを防止する機能(以下「水封機能」という。)を有するもの」と定義されている。

また、コンビ則第5条第1項64号の2では、「液化石油ガス岩盤貯槽にあっては、 次に掲げる措置を講ずること。」と以下の項目が要求されている。

イ. 水と液化石油ガスの境界面を測定する計器(以下「界面計」という。)の設置 ロ 水封機能を維持するための措置

腐食の恐れのある金属管には、腐食を防止するための措置

ニ. 金属管の破損により液化石油ガスが漏えいしたときに安全に、かつ、速やか に遮断するための措置

ホ. 金属管の地上部分の破損を防止するための措置

岩盤貯槽の特徴は、貯槽周辺地下水圧を貯槽内圧より高く保つことにより貯蔵物の液化石油ガスの漏えいを防ぐ方式(水封方式)を採用していることである。

従来の貯槽は、鋼板製の構造物により、液化石油ガスの液密、気密を確保するのに対し、岩盤貯槽は、地下深い堅固な岩盤を掘削した空洞を貯槽とし、岩盤の空隙、割れ目等を満たしている地下水による水封機能により液密、気密を確保している。特定設備としての岩盤貯槽の概要を図A、構成説明表を表Aに示す。

この方式による貯蔵を安定状態に保っ上での主たる留意点は、貯槽空洞周辺の水圧が、所定の水圧に確保されていること(水封機能の確保)と貯槽空洞が安定していることに集約される。

貯槽空洞は、健全な岩盤内に空洞を計画・設計した上で、入念な施工、施工中検査を行い、貯槽空洞の変位が収束したことを確認すること等により、完成時に貯槽空洞の安定性を確認することが可能となる。操業中は液化石油ガスによる内圧が作用することにより、安定性が増す状態となるが、万が一、貯槽空洞の安定に支障が生じた場合には、水封状態に変化が生じる。

水封機能を維持することは、保安管理上最も重要な要素である。この水封機能の維持の確認は、完成時の気密試験により異常のないことを確認し、操業中は地下水 圧の確保、貯槽内圧を設計圧力以下に維持することが重要なポイントとなる。

また、金属管の健全性も重要である。金属管(水封機能により気密性を有する部分に囲まれた空間に通じる金属製の配管)が損傷を受ければ、配管竪坑内に液化石油ガスが漏えいし、水中を上昇て配管竪坑上部に達し、地表部に漏えいする。この金属管には耐久性、耐腐食性を考慮した材料が使用されているが、長期的にみた健全性を定期的に確認する必要がある。万一の金属管の損傷に対しては、漏えいを遮断するフェールセーフバルブシステムを採用している。

岩盤貯槽は耐圧性能及び強度に係る検査は適用しないため、この点を十分考慮に 入れた点検・検査方法を検討する必要がある。

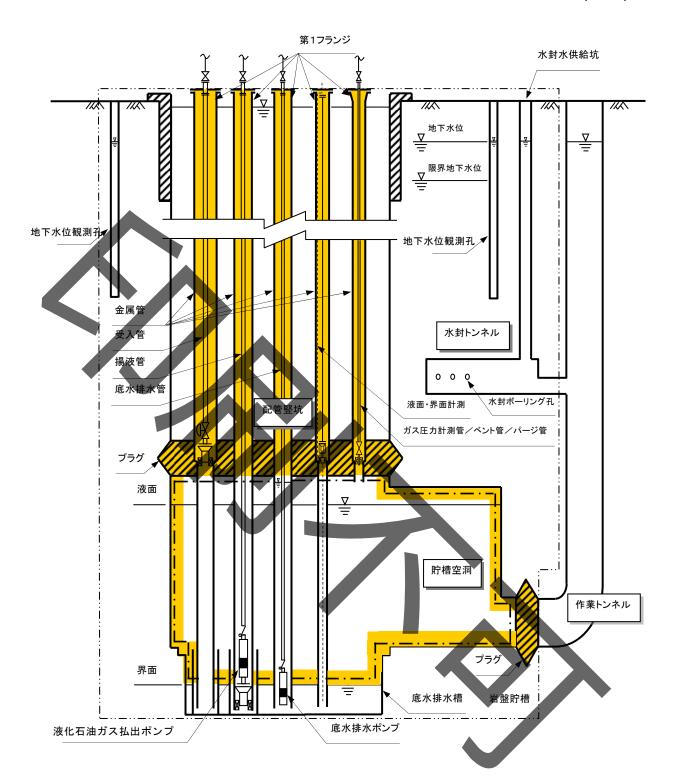


図 A 特定設備としての岩盤貯槽の概要図

表 A 特定設備としての岩盤貯槽の構成説明表

名 称	構成	表 示 (図 A 参照)	備考
岩盤貯槽(特定設備)	作業トンネルを除き、地下に設置される設備 1. 貯槽本体 貯槽空洞(底水排水槽を除く)、プラグ、金属管(第一フランジまで) 2. 付属設備 配管竪坑、水封トンネル・水封ボーリング孔、地下水位観測孔、底水排水槽	ー…ーで囲まれた部分	1.図のポンプ、揚液管、 底水排水管、水封水管、 水排水管、水部分 時で、水が等に を を を を を を を を を を を を を を を を を を を
貯槽本体	貯蔵可能な部分で貯槽本体(耐圧部分) 貯槽空洞(底水排水槽を除く) プラグ、金属管(第一フランジま で)	で囲まれた部分	・金属管を含め液化石油ガスが貯蔵される部分
貯槽空洞	金属管を除いた貯蔵可能な部分	プラグ、岩盤部分で 一・・・ で 囲まれた部分	・掘削された空洞(底水 排水槽を除く)及びプ ラグ内面
付属設 備	1.配管竪坑 金属管を収納する竪坑でプラグ上面より地表面まで。 2. 水封トンネル・水封ボーリング孔 貯槽空洞周辺の水圧を確保するために必要に応じ、水を供給するトンネルとボーリング孔 3. 地下水位観測孔 貯槽空洞周辺の地下水位を観測するためのボーリング孔 4. 底水排水槽 貯槽空洞に侵出して来た水を一時的に溜めるピット		・底水排水槽は貯槽本体ではないが、機能上、保安上必要な部分

附属書 B (参考)

検査周期(時期)を10年以内とした理由について

金属管及び金属管サポート架構は耐腐食性に優れた材質の SUS316 系を使用する とともに電気防食を行っているので基本的には腐食環境には無いといえる。

参考例として、フランスの液化石油ガスの岩盤貯槽における金属管は炭素鋼+電気防食であるが、検査は 10 年毎に検査機関と打合せの上、代表的な金属管を検査し、異常がなければ、その他の金属管は次回の検査としている。次回の検査では、前回検査していないものを優先して選定し、検査を実施している。

なお、我が国の原油における岩盤タンクの金属管は SUS316 であるが、危険物の規制に関する政令第8条の4第2項第2号における岩盤タンクの保安検査時期を10年以内としている。

液化石油ガス岩盤貯槽の金属管等は、上記の他事例より腐食しにくいことから健全性の検査は、10年以内毎に全線にわたる目視検査及び肉厚測定を実施することとした。なお、腐食環境としては最も厳しい箇所と考えられる配管竪坑内の気液界面近傍を1年に1回検査し、異常が認められた場合には全線にわたる検査を実施することとした。

《参考》危険物の規制(関する政令第8条の4第2項第2号

岩盤タンクに係る特定屋外タンク貯蔵所及び特殊液体危険物タンクのうち総務省令で定めるものに係る特定屋外タンク貯蔵所 完成検査を受けた日又は直近において行われた法第 14 条の 3 第 1 項若しくは第 2 項の規定による保安に関する検査を受けた日の翌日から起算して 10 年を経過する日前 1 年目に当たる日から、当該経過する日の翌日から起算して 1 年を経過する日までの間

附属書 C (参考) フレキシブルチューブ類の管理について

序文

この附属書は、腐食や劣化損傷を生じさせないためのフレキシブルチューブ類の 管理について参考のために記載するものであって、規定の一部ではない。

C.1 適用範囲

フレキシブルチューブ類に関して、腐食や劣化損傷を生じさせないための管理について、以下の確認事項を示す。

- 1) 高圧ガスの圧力
- 2) 高圧ガスの種類
- 3) 選定及び設置状況
- 4) 漏えど等の異常の有無
- 5) 総合評価

C.2 高圧ガスの圧力

使用される高圧ガスの常用の圧力が 25MPa 以下でなければならない。

C.3 高圧ガスの種類

使用される高圧ガスが次のものでなければならない

C.3.1 液化石油ガス

次のとおり不純物が管理されているものでなければならない。

- a) 水分 遊離水分 1)があってはならない。
 - 注 1) 遊離水分の確認は、LP ガスの品質に関するガイドライン(平成 22 年 7 月日本 LP ガス協会)に基づき、JLPGA-S-02 LP ガスの水分試験法の 1.カールフィッシャー法(平成 11 年 2 月)又は JLPGA-S-02T LP ガスの水分試験法(水晶発振式水分計法)(平成 11 年 2 月)による含有水分の確認者しくは JLPGA-S-02 LP ガスの水分試験法の 3.遊離水分確認法(平成 22 年 7 月)による遊離水分の有無の確認による。
- b) 硫化物 銅板腐食試験方法²⁾による判定で2以上であってはならない。 注²⁾ 銅板腐食試験方法は、JIS K 2240(2013)液化石油ガス(LP ガス)による。
- c) 水銀 $^{3)(}$ 使用材料がアルミニウム合金等、水銀とアマルガムを生成する場合に限る。)
 - 1) プロパン中 0.009mg/Nm^3 を超えてはならない。
 - 2) ブタン中 0.08mg/Nm^3 を超えてはならない。
 - **注**³⁾ 水銀の分析方法は、JLPGA-S-07 LP ガス中の水銀分析方法(平成 21 年 6 月)による。

C.3.2 液化石油ガス以外の高圧ガス

使用材料に対して腐食性を有する高圧ガス以外のものであって、次のとおり不純物が管理されているものでなければならない。

- a) 水分 高圧ガス中の水分が大気圧下露点温度-50℃以下に脱湿されていなければならない。
- b) 水分以外の不純物 フレキシブルチューブ類の耐圧部を構成する材料に影響を 及ぼすおそれのある有害な不純物が含まれていてはならない。

C.4 選定及び設置状況

次の事項について、適切な状況でなければならない。

- a) 使用されるフレキシブルチューブ類の接ガス部の材料と内容物の性状(高圧ガスの種類、温度、圧力等)の組み合わせ
- b) 使用場所・目的等に応じた製品の選定及びその設置

C.5 漏えい等の異常の有無

次の事項により、漏えい等の異常がないことを確認する。

- a) 本文における 4.2.3 b) 及び c)の目視検査
- b) 本文における 4.3 高圧ガス設備の気密性能

C.6 総合評価

C.2~C.5 の確認事項、過去の使用実績、当該フレキンブルチューブ類の製造メーカーが耐用期間を推奨している場合にあってはその期間等を勘案し、評価しなければならない。

附属書 D (参考) 肉厚測定筒所選定についての参考資料

序文

この附属書は、肉厚測定箇所の選定について参考のために記載するものであって、 規定の一部ではない。

D.1 公益社団法人石油学会規格の掲載(抜粋)

高圧ガス設備の外部の目視検査及び肉厚測定の実施に際しての参考に、 JPI-8S-1-2023 配管維持規格の一部を抜粋し、掲載する。

なお、本抜粋の中で 配管維持規格の抜粋箇所以外の章番号や事例などを引用している部分の詳細については、JPI-8S-1-2023の該当部分を参照されたい。

- **5.1.1 検査箇所の選定** 配管系の腐食・エロージョンの検査箇所の選定手順を以下に示す。
- a) 配管系内面の腐食・エロージョン 略
 - 1) 腐食・エロージョンの種類 略
 - 2) 腐食・エロージョンの検査箇所 略
 - 一般部に比べて腐食、エロージョンが発生しやすい部位は、以下のとおりである。具体的な詳細箇所は、**付属書 A**に示す。
 - 滞留部及びスケール堆積部 腐食性物質を含む流体で、流れが長期間 滞留する部位及びスケールが堆積する部位では、局部的な腐食が発生することがある。

表 5.1.2 滞留部及びスケール堆積部などの発生しやすい環境と配管系

腐食環	境 滞留部及 びスケー ル堆積部 ・ 通常運転時に他端が閉止状態にある枝管 (*例*00,159) ・ 安全弁行き配管 (*例241,343) ・ クーラー出入ロヘッダー両端のキャップ部など流動がない滞留範囲 (**例3,143) ・ 流れの遅い配管系で、立上がり部や分岐部近傍の配管下部 (**例81,128,144,180,181,229)		· ·
びスケー ル堆積部 - 通常運転時に他端が閉止状態にある枝管 (*例100,159) - 安全弁行き配管 (*例241,343) - クーラー出入ロヘッダー両端のキャップ部など流動がない滞留範囲 (*例3,143) - 流れの遅い配管系で、立上がり部や分岐部近傍の配管下部 (*例81,128,144,180,181,229) - 長期間停止した配管側面のスケール堆積境界部 (*例145)	びスケー ル堆積部 - 通常運転時に他端が閉止状態にある枝管 (♣例100,159) - 安全弁行き配管 (♣例241,343) - クーラー出入ロヘッダー両端のキャップ部など流動がない滞留範囲 (♣例3,143) - 流れの遅い配管系で、立上がり部や分岐部近傍の配管下部 (♣ 例81,128,144,180,181,229) - 長期間停止した配管側面のスケール堆積境界部 (♣例145)	腐食環境	該当配管の例
	・通市工の状態の向入使用配官	びスケー	 通常運転時に他端が閉止状態にある枝管 (*例100, 159) 安全弁行き配管 (*例241, 343) クーラー出入口ヘッダー両端のキャップ部など流動がない滞留範囲 (**例3, 143) 流れの遅い配管系で、立上がり部や分岐部近傍の配管下部 (**例81, 128, 144, 180, 181, 229) 長期間停止した配管側面のスケール堆積境界部 (**例145)

オフサイト配管

- 通常流れが無い行止り配管 (事例 23,56,83,90,101,102,125,126,127,133,148,160,162,163,265,266)
- ・流れの遅い配管系で、立上がり部や分岐部近傍の配管下部 (事 例4,40,161,177,178,179,182,242)
- ・滞留部がスチームトレースで加熱された配管のスチームト レース近傍 ^(事例103)
- ・ドレン抜き配管の長期間水分滞留部 (事例14,57,82,233)
- ・長期間休止中の配管 ^(事例41,71,183,206,207,224)
- ・非定常時使用配管、使用頻度の低い間欠使用配管 (事例 12,146,147,267)
- タンク水切り配管 (事例43, 44, 87, 115, 149, 218)
- スロップ配管滞留部 (事例42, 228, 268, 269, 375, 376)

通常運転時に他端が閉止状態にある枝管、安全弁行き配管やクーラー出入ロヘッダー両端のキャップ部などで流動がない滞留範囲にはスケールなどの堆積が生じやすく、堆積物下の腐食が生じる。滞留部と流動部との境界付近は特異な流れ状態となっていることが多く一様な腐食とはならない。更に、流れの遅い配管系では、立上がり部や分岐部近傍の配管下部にスケールが堆積しやすく、スケール堆積部位では水分が凝縮して溜まり、腐食しやすい傾向にある。

また、滞留部がスチームトレースで加熱されていたために、配管下部よりもむしろスチームトレース近傍で流体中の塩分が濃縮して局部的に腐食した事例がある。

ドレン抜き配管部は、長期間経過中に水分が滞留し腐食傾向にあるので、 定期的なパージなどが望ましい。

スチームパージ後、長期間停止した配管でも同様の腐食が発生する。また、長期停止中にスケール堆積部の境界で配管側面が減肉した事例もある

また、通常空の状態の配管においては、間欠使用時の流体衝突や流体中の金属(例えば Cu)の析出による電位差腐食が局部的減肉を起こした例もある。

オフサイトスロップ配管など広範囲に及ぶ配管では、間欠運転など、運転状況が多様であり、高濃度の塩素イオンが存在する場合があるなど、 スケール堆積や腐食状況が一様とはならないので注意が必要である。

表 5.1.3 オフサイト配管滞留部で内面腐食穿孔が見られた油種および条件

構造/使用条件	オフサイト配管滞留部で内面腐食が発生し易い油種
オフサイト行止り配	・原油配管、スロップ配管 ^(事例378)
管、長期休止配管、	・タンク水切り配管
┃間欠使用配管、非定 ┃ 常時使用配管	・未脱硫あるいは海上受入れのナフサ ^(事例301) ・ジェッ

ト燃料·灯軽油·重油配管

・ドレン配管

オフサイトでは特に長大な行止り配管、長期休止配管、間欠使用配管(使用していない期間が長い配管)、非定常時使用配管において、滞留部及びスケール堆積部の内面腐食が発生しやすい。

油種別に見ると、原油配管、スロップ配管、タンク水切り配管、未脱硫あるいは海上受入れナフサ/ジェット燃料/灯軽油配管、ドレン配管など、腐食性物質を含む流体が長期間滞留した結果として内面腐食により漏洩しないる。

検査対象が長大である一方で、減肉形態が局部的な内面腐食であるため、 検査対象の優先順位付けと検査箇所・範囲の絞り込みが重要となる。検査 対象を油種と不使用期間と行止り長さによって優先順位付けした事例や、 ラック配管の検査箇所をサポート部の中間の垂れ下った低所に絞り込ん だ事例がある。

検査技術については、JPI-8R-13の4.3章の「局部腐食の検出に用いられる検査法」を参照する。

- **高所のガス溜まり部** 未脱硫ナフサ等の荷揚げ配管などで、酸素が混入する配管では、高所のガス溜まりでの腐食に注意を要する。内部流体に同伴される水分が、配管のガス溜まりで結露し、減肉が発生した事例がある。(事例 344)
- 異種金属、異種組織の接触部 異種金属溶接部において異種金属接触腐食により局部腐食が発生する。海水などの電気伝導度の大きい水溶液中において生じやすい。(集例 142)
- 一 管路の曲り箇所 エルボやベンドなどの流れ方向が急激に変化する箇所では、流速の増大、偏流及び旋回流が発生し、局所的に大きい腐食・エロージョンを生ずる。(事例 264, 270)
- 一 流れの分流・合流箇所 分流、合流及びそれに伴う偏流によって流体が変化する箇所及び流体が管壁に衝突する箇所では、エロジョン及びエロージョンが発生する。特にティー部のような構造上流動状態が変化する部位では局所的な乱流が発生するため、減肉は広範囲に及ぶ可能性があることに関する必要がある。写真 5.1.1 参照(事

写真 5.1.1 事例 63

また、遊離水を含む常圧蒸留装置由来の LPG と塩素を含むドライな接触 改質装置由来の LPG とが、運転条件の変更に伴う配管新設によって混合 されるようになり、配管合流部で腐食環境を形成した事例がある。(事例 92) さらに、配管合流部において、主配管の運転条件が連続からバッチ運転 に変更された結果、枝配管側からのエロージョンコロージョンが加速した事例がある。(事例 93)

一流れが絞られるなど、急変する箇所 オリフィスの挿入箇所、バルブ下流など、管径や流路が急変する箇所では、流れの状態が変化する。オリフィスの例では、オリフィスロでの流速の上昇、オリフィス下流における渦流の発生が挙げられ、静圧回復点近傍までの箇所に腐食の発生事例が多い。空気抜きなどのためオリフィス上部にベント孔が設けられている場合は、下流部にエロージョンコロージョンが発生する可能性がある。(事例 25)

また、バルブ下流側に生じる流れの乱れによって、エロージョンコロージョンが発生する事例も報告されている。(事例 64) 流量調整のため仕切り弁を極端に絞り込んで使用する等、本来の使用方法とは異なる目的で使用した場合にも生じやすい。(事例 84) ジャケット管(二重管)の立上りエルボ部で、熱源のスチーム及び凝縮水の液滴の衝突により、内管のエルボ腹側の外面がエロージョンを受けて開孔した事例が報告されている。(事例 271)

- 一 注入箇所 水や薬品を注入する箇所では、注入される流体の物性と運転条件によって局部腐食が生じる。この為、注入部及びその上下流は、必要に応じて面での肉厚測定(多点肉厚測定、超音波による面探傷等)を行なう。(♣例 243) また、注入流体の拡散が十分でない場合は、偏流が生じ、この影響は上下流に及ぶ。直管部の主流が乱流の場合の腐食範囲は、注入点より上流方向へはおおよそ管径の 3 倍、下流方向へはおおよそ管径の 20 倍までである。インナーノズルがない場合では、注入された流体は本管内壁に沿って流れたり、注入水が直接衝突したりして、注入頻度の変化などの影響によって激しく腐食した事例があるので注意を要する。(♣例 5) また、インナーノズルが腐食開口していたために薬剤の分散が不均一となり下流配管が腐食した事例もある。したがって、インナーノズルで水等を注入している場合は定期的にインナーノズルの点検を行う必要がある。(♣例 24,116,302,377)
- 一 凝縮部 蒸留装置の塔頂系、リアクター下流の反応生成物系、高温油のベント配管 (事例 26)、排ガス回収系統及びアシッドガス系などで蒸気が部分的に凝縮する際、凝縮液 (特に凝縮水)中に腐食性物質が濃縮し、配管系が腐食されることがある。(事例 184, 185, 303) 特に初期の凝縮液は、腐食性物質で飽和され高濃度となるので腐食が激しくなる。初期凝縮の起る位置は運転条件、局部的冷却(フィン効果による)の有無 (事例 6.45, 124) などにも影響される。(事例 117) 凝縮部の腐食防止のためにスチームトレースを取り付けている場合は、その機能が保たれていることを定期的に確認する必要がある。(事例 304)
- 一 蒸発する箇所 ホットバイパスが混入する箇所、減圧箇所、本管の流れが停滞している場合のジャケット配管、トレース付き配管などで配管系内の液体が蒸発し、気相中に腐食性物質の濃縮やフラッシュにより保護被膜の剥離によるエロージョンコローションなどによって、配管の腐食が加速される事例がある。(事例 33,150,186,223) また、スチームコンデンセートの部分フラッシュによって調節弁下流では、エロージョンが発生することがある。

また、装置停止時しか使用せず、運転中はドレンが滞留している滞油移送配管で、高温の本管との境界にて蒸発・凝縮が繰り返されて著しい減

肉が発生した事例がある。(事例118)

- 一 固体又は液滴、気泡を含む流速のある流体の配管系 スラリー、触媒などの固体を含む流体や、スチームコンデンセートなどの液滴を含む気体が流れの方向を変える部位でエロージョンが発生しやすい。(事例 164) ベンド管下流にノズル、マンホール、温度計などが設置されている場合、取り付け部近傍は流れの乱れが発生しエロージョンを受ける恐れがあることに留意する。(事例 27) また、圧力の変動によって液体中で気泡が発生と消滅を繰り返す環境では、キャビテーションエロージョンを生じる可能性がある。
- 高流速で乱流の激しい箇所 腐食とエロージョンが同時に発生・進展すると、各々が単独に発生する場合よりも著しい減肉がある。このようなエロージョンコロージョンは、高流速で乱流の激しいところで発生する。特に、流体中に水硫化アンモニウム及び硫酸を含む環境では流速による影響に注意する。
- 一 ガス溜まり箇所(高所のラック部等) 腐食性物質を含む流体で、水分及び酸素が混入する配管は、高所のラック部等のガスが溜まる箇所において、気相部で結露した水分と酸素との反応により腐食が発生することがある。(事例344)
- b) 配管系外部の腐食 配管外部の腐食の検査箇所について、以下の 1) 及び 2) に示す。
 - 1) 保温のある配管系(保冷、火傷防止及び耐火施工配管も含む) 保温配管では、保温材への雨水浸入などによって保温材下の配管に腐食や損傷が発生する。最も一般的な現象は、炭素鋼では局部腐食、オーステナイト系ステンレス鋼では塩化物応力腐食割れである。これら保温材下腐食発生の可能性を評価するため、保温、外装板、外装板継目のシールなどの健全性を点検することが重要である。(事例 7,65,104,105,216,225,230,272,273,274,275,345,346,347,379,380,381,

382,383,413) なお、目視点検が行き届きにくいうック上配管などは、高所点検用のポールカメラ等による外装板の点検が有効である。(事例305) 検査等で保温材を解体し、その後復旧する場合は、防水性能が低下しないよう注意が必要である。(事例187) また、火傷防止対策(保温)が行われているようなケースで外面腐食が生じた事例 (事例106)、不要となった保温材(保冷材を含む)を撤去せず、その内部に雨水が滞留して外面腐食を生じた事例 (事例276,384) 等があることから、可能な限り不要な保温は撤去し、火傷防止が必要な個所は金網を施工することが望ましい。(事例277)

保温材下腐食が起りやすい配管例及び共通的な部位を表 5.1.4 及び表 5.1.5 に示す。

保温材下腐食の起りやすい箇所例を付属書Aに示す。

オーステナイト系ステンレス鋼の塩化物応力腐食割れについては、5.2.1 b) に記載する。

表 5.1.4 保温材下腐食などの発生しやすい環境と配管系

5.1.4 保温材下腐食な 周囲の環境	:どの発生しやすい環境と配管系 該当配管の例
	・冷水塔付近の配管
	・スチームトラップ近傍の配管
	・スチームトレース配管の保温内継手 ^(事例 151)
	・スチームトレース配管の腐食や損傷による開口で湿
┃ ┃ 噴霧、水蒸気、海水飛	潤環境になった配管 (事例 187, 188, 189, 191, 232, 306, 348, 385, 386)
沫に直接さらされ	・桟橋上の保温配管 ^(事例 8)
る。	・エアフィンクーラー下部近傍の配管 ^(事例 76)
	・上部の構造物の影響で雨滴や海水等のドレンのかか る配管 (事例 222, 349)
	・大雨、高潮などによって冠水した配管 ^{(事例} 96, 107, 152, 190, 220, 234, 307)
	・隣接配管の漏洩などによって、水等の漏洩飛沫の影響を受けた配管 (事例 308)
保温材内に湿気を吸	
収蓄積する可能性が	鋼西2 管 (事例 153, 309, 350, 387)
ある。	・使用中は 150°C以上であるが、間欠運転される炭素 鋼・低合金鋼配管 (事例 310, 388)
	・通常は氷点下で大気中の水分は配管表面に氷結する
	が、間欠運転である為に付着している氷が度々融解
	し、湿潤環境となる炭素鋼・低合金鋼配管 (事例 244, 278)
	・本管から分岐され 150℃以下となる滞留部及び付属
	品や計装機器への導圧配管 (事例 89,119,279,280,311,312,351)
	・本管に設置されたサポート及びストッパーのフィン
	効果によって局部的に 150℃以下となる本管 ^(事例 66)
	·火傷防止対策施工配管 (事例 9, 106)
	・コンクリートなどの構造物に接している保温施工配管 (事例 95)
	・保温施工された遊休配管 ^(事例 165)
	・劣化した外装板シール材下の配管 (事例 225, 271, 272, 275, 313)
	・ステージ貫通部やウィープホール等の影響で雨滴に 著しく晒される箇所 ^(事例 314)
	・配管を支えるため、低温配管の保冷材外面にサポート付きの保護カバーを取り付けた部位 (事例387)
保温外装が損傷して	・振動配管
水分が浸入する。	・たわみのある配管 ^(事例 281)
	・塗材(マスチックなど)が劣化(亀裂、剥離、防水
	性能の劣化など)している配管

が存在する。

上記の環境に加え保 - 65℃~210℃程度で運転されているオーステナイト 温材下に塩素イオン 系ステンレス鋼配管 (事例 191)

備考 表中の温度は、配管内部流体温度を示す。

表 5.1.5 保温材下腐食の発生しやすい共通的部位

部位	具体的な箇所
•	
保温及び外装材の貫	ベント、ドレン部 ^(事例 389)
通部又は切欠き部	ハンガー保持部
	パイプシュー取付部
	トレース管貫通部
	ステージなどの貫通部
	架台に配管直置きしている保温を切欠いた箇所 (事 例 129, 245)
	サポート取付、近接する配管のフランジ、分岐管
	との干渉を避けるため保温を切欠いた箇所 ^{(事例} 10,67,166,167,315,316,390)
	抱線取付けのために配管上面の保温材に設けた貫 通部 (等例 47)
保温末端部	フランジ、バルブ、 ^(事例 130) 付属品
	鉛直配管末端
外装の損傷又は欠落	膨れ部(腐食生成物が予想される)
部	変色部(高温やけ)
	止めバンドの外れ部
	重ね合せ部の外れ部
	はぜ掛けの弛み部、上向き施工部 ^(事例 391)
	外装板が損傷した垂直保温配管の直下部(エルボ
	およびエルボ近傍の水平部) ^(享例 279, 352)
	垂直配管で上部保温板金とのシールが未施工部 (事 例 317)
	隣接配管と抱き合わせて保温施工している配管 (外装板上部に水分が滞留しやすい) (事例 318)
	インサルコート等の不良部に生じる間隙、損傷部 (事例353)
	歩廊下の外装未施工部(流体の用途変更に伴い保 温を後付け) ^(事例 354)

2) 保温のない配管系

一 裸配管 目視検査にて、配管外面の腐食状況の確認を行う。配管下部で土壌、トレンチ等のコンクリート躯体と接触している箇所 (事例 355)、地面との距離がほとんどない箇所であって、湿潤環境となっている部位、梁あるいはサポートに配管が直接接触している箇所 (事例 319, 356, 392)、配管上部の構造物やレイアウトの影響で雨滴、結露水、ドレン、スチーム等に晒される箇所、および隣接配管の損傷などによって漏洩した水等に晒されていた箇所、大雨時等に雨水に浸かる箇所、スチームトラップ吹出口の直近、冷却目的等で散水を行なっている機器やクーリングタワー周り等では外面腐食の有無を検査する。(事例 71, 108, 131, 282, 283, 284, 285, 320, 357, 393)

また、オーステナイト系ステンレス鋼 (内部温度 100℃) の裸配管に工業用水が飛散・蒸発を繰り返し、その成分中の塩化物とカルシウムが濃縮した硬質スケール下で、塩化物 SCC による不具合が発生した事例もあるため、注意する必要がある。(事例 192)

- **塗装、コーティング、メッキ、防食テープ施工配管など** 塗装、コーティング、メッキ、防食テープなどの外観を目視検査する。塗装、コーティングなどに欠陥あるいは錆コブ状やうろこ状の錆を認めた場合には、その欠陥部から雨水が浸入し局部的な腐食が生じることがあることから(事例 88) それらの欠陥部を除去して配管本体の腐食の有無を検査する。(事例 58,59,60,193,286,394) また、防食テープの劣化や膨らみが認められた場合は、それらの部位を剥がして腐食の有無を検査する。(事例 72,120,121,287,321,322,323,324,395,496) 特に防食テープ巻きの端部付近では、水分浸入による配管の外面腐食を生じ易いので注意する。(事例 397) 防食テープの外側にステンレス薄板を貼り保護板としたケースは、防食テープの外側にステンレス薄板を貼り保護板としたケースは、防食テープの劣化状況が確認しにくいので注意が必要である。(事例 398) 桟橋上のサポート接触部で防食シートが処置されていたにもかかわらず、防食シートが劣化し海水が浸入し腐食開口した事例がある。(事例 94,235)
 - なお、再塗装の際には特に下地処理を十分に行わないと、期待したとおりの塗装の効果が得られないことがあるので注意が必要である。(事例 194, 195)
- 一 サポートなどの取付部 サポート取付部の配管表面に注意して、目視検査を行う。特に、ダミーサポート取付部 (事例 436, 399)、ハンガー取付部などのサポート接触面 (事例 11) には、腐食が発生しやすい。また、サポートの構造によっては目視検査が困難な箇所 (事例 85, 221) があるので留意する。ダミーサポート取付部が連続全周溶接されていない場合 (事例 358) やダミーサポートが腐食開口している場合は雨水が浸入しやすい。(事例 400, 401) 特にダミーサポート取付部はウィープホールからの湿気の浸入 (事例 325) により外面腐食が進行しやすい。(事例 196, 219, 326, 403) サポート取付部の腐食の発生しやすい箇所例を付属書 A に示す。
- 一 トレンチ配管 トレンチ内は雨水が滞留しやすいため、目視検査にて配管外面の腐食状況の確認を行う。また、腐食抑制の観点から、トレンチ内の排水を適宜行うなど、環境管理に努めることが望ましい。(事例 169) また、過去に津波や高潮等によって海水が流入した経歴のあるトレンチでは、残留塩分によって内部の配管の外面腐食速度が高くなる場合があ

り、通常よりも短い周期で外面腐食検査を行なう等の配慮が必要である。 (事例 213)

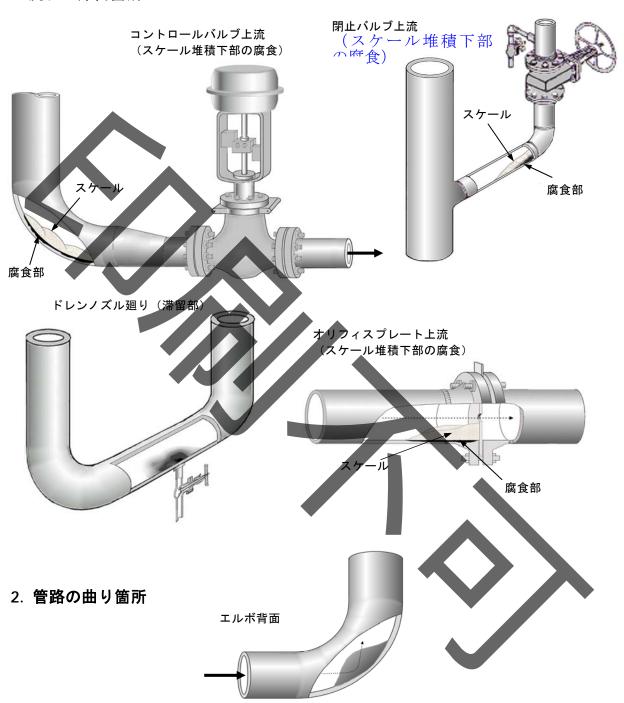
3) 防油提貫通部の配管系 貫通部は一般に防食テープ巻きによる防食対策を行い、配管部材が貫通部のコンクリートなどと直接接触しないように施工するが、シール材が経年劣化すると雨水浸入によって貫通部内が湿潤雰囲気となり、防食テープ端部付近あるいは防食テープ劣化剥離部が腐食を受けやすい。(事例 246,359,404)また、貫通部内に部分的に防食テープが未施工の部位が存在すると、シール材の劣化と雨水浸入により防油堤を構成する鉄筋と防食テープ未施工部で電位差が生じ、局部減肉を発生させる。(事例 327,405,406)防食テープの替りにモルタル被覆された配管では、モルタル劣化にともない腐食開口した事例がある。(事例 168)また、スリーブタイプの場合は、隙間部に雨水が浸入し隙間腐食を発生しやすいので留意する。(事例 28,46,132,154)

防食テープの施工の際には、施工管理を十分に行わないと、期待した通りの防食効果が得られないことがあるので注意が必要である。^(事例 197) 防油堤を貫通している保温配管においても、外装板が劣化・損傷すると 雨水等が浸入し、外面腐食を発生しやすいので注意が必要である。^(事例 217, 234)

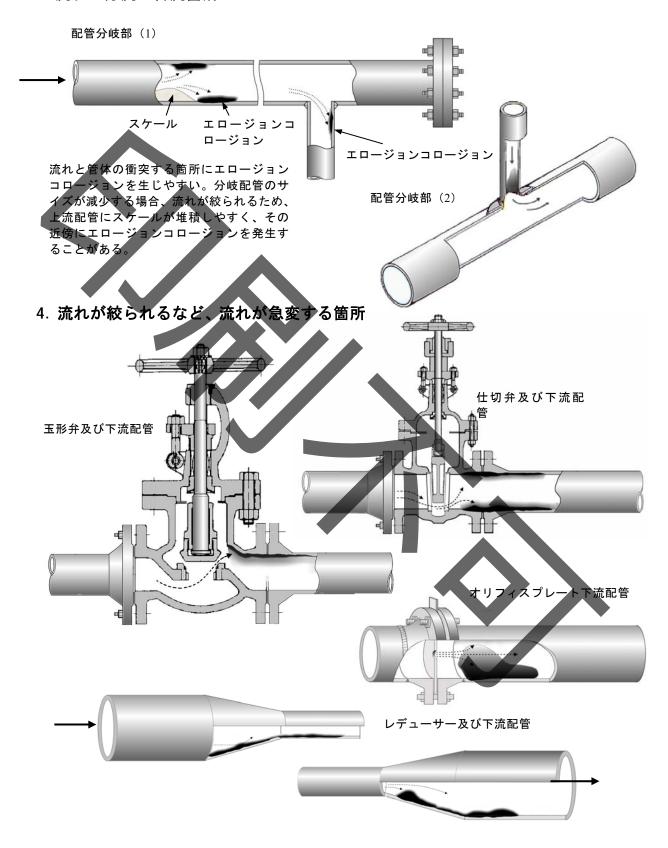
なお検査計画立案時や掘削補修時には、配管の防油堤部のジャンプオーバー化を検討する。

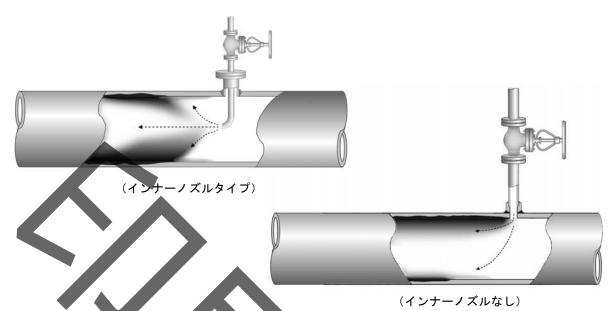
※この付属書 A は JPI-8S-1 の付属書であり、本基準の附属書ではない。

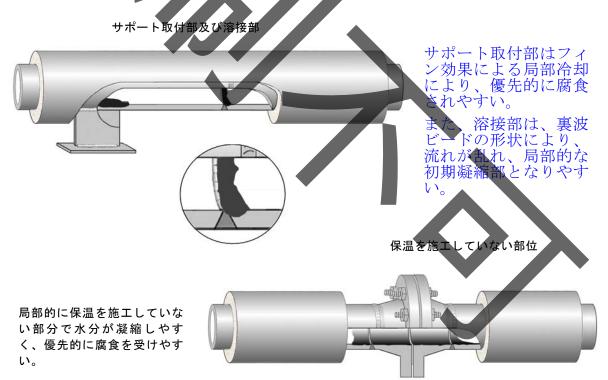
付属書 A 腐食·エロージョンが起こりやすい箇所

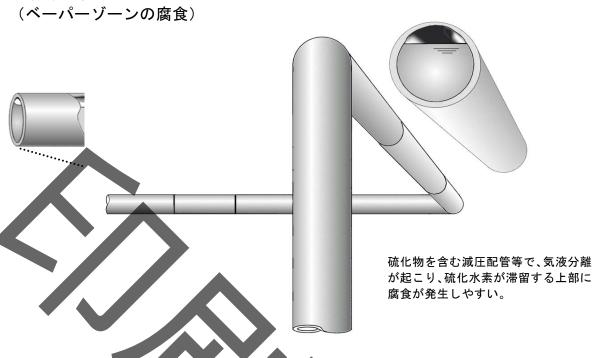

この付属書は、本文の 5.1.1 a) 2) の "腐食・エロージョンが起こりやすい箇所"の中で記述されている事例を、一部の自明な例を除き、具体的に図示したものである。石油精製装置の配管系は、その構造上、分流・合流箇所、管路の曲り箇所、滞留箇所、流れが急変する箇所などが多く、このような箇所では、腐食・エロージョンによる減肉速度が増加することがある。配管の維持管理を充実させるためには、このような減肉しやすい箇所を高い確度で予測することが重要であり、そのためには、石油精製事業所における長年の経験を生かし、共通に経験すると予測される事例を整理する必要がある。このような事例は、文章表現だけでは適確に把握することが難しいため、できるだけ目に見える形で示し、必要に応じて注釈を付けることにした。この付属書で採用した事例は、下記の 13 類別の全 32 例であり、上述の配管構造上流れが変化しやすい箇所のほかに、本文の表 5.1.3 に示した保温配管の保温材下腐食など、石油精製事業所で共通に起こりやすいと推定されるその他の事例も含めて図示した。なお保温材下腐食については、一般財団法人 エンジニアリング協会の「被覆配管等の運転中検査技術に関する調査研究」も参考とした。

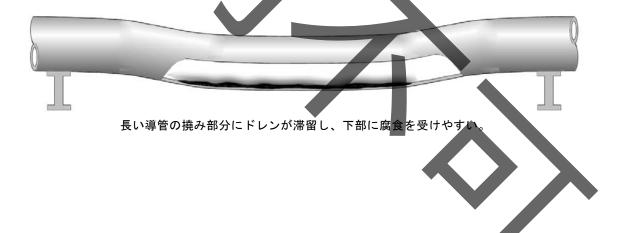
図示例の類別


- 1. 流れの滞留箇所
- 2. 管路の曲り筒所
- 3. 流れの分流・合流箇所
- 4. 流れが絞られるなど、流れが急変する箇所
- 5. 注入箇所
- 6. 凝縮筒所
- 7. 蒸発する箇所
- 8. 撓み配管下部
- 9. 保温材施工部
- 10. サポート取付部
- 11. 埋設配管立上り部
- 12. 土壌との接触部
- 13. 防油堤貫通部
- 14. CUI の発生しやすい箇所と環境例

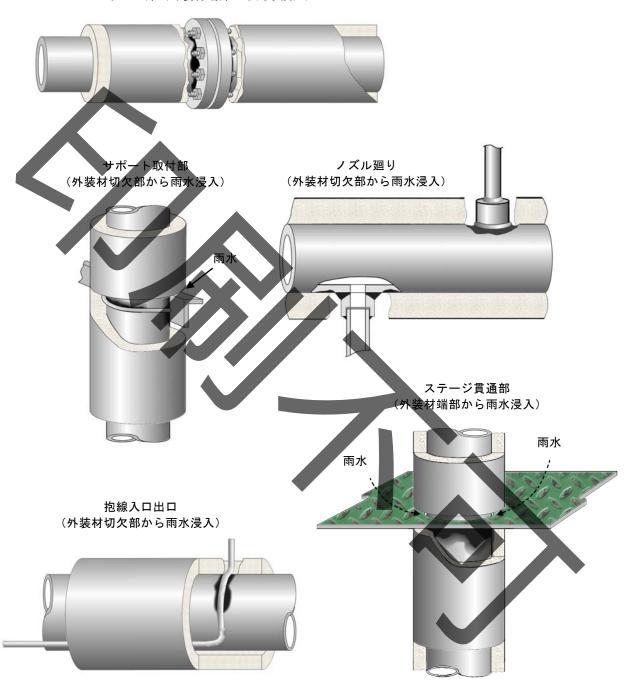

1. 流れの滞留箇所

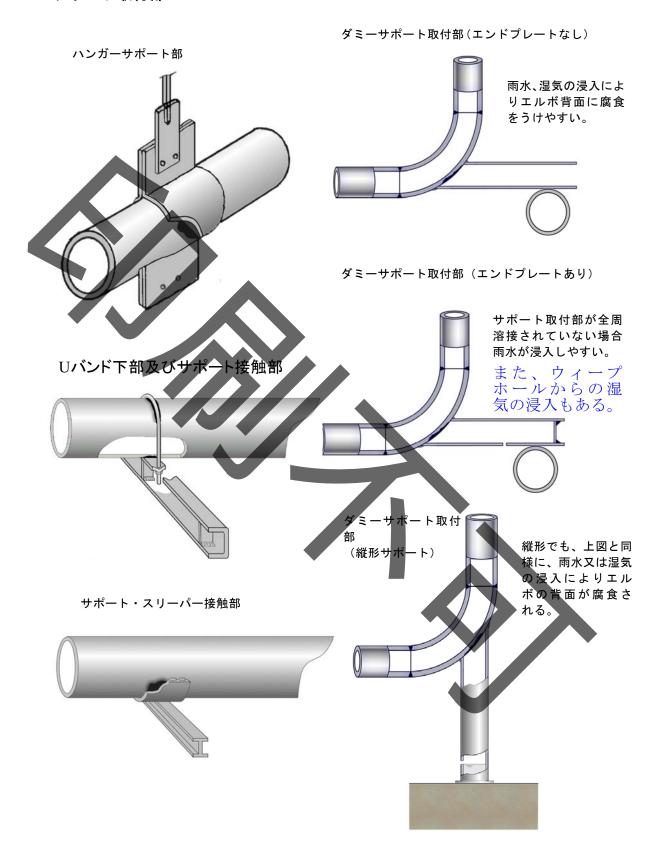

3. 流れの分流・合流箇所


5. 注入箇所

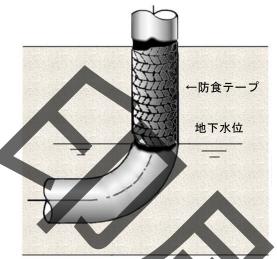

6. 凝縮箇所

7. 蒸発する箇所

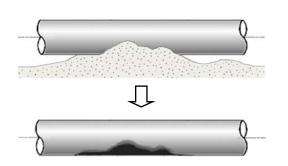

8. 撓み配管下部


9. 保温材施工部

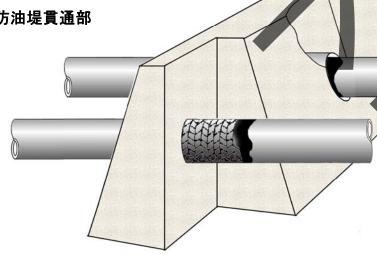
(保温が施工しにくい部位で、雨水の浸入により発生する腐食)


フランジ部 (外装材端部から雨水浸入)

10. サポート取付部



11. 埋設配管立上り部



地表面付近及び防食デープ端部に腐食を受けい。特に防食テープが地中部分にしか巻いて ものは注意を払う必要がある。また、地下水位はベル付近にも腐食を受けやすい。

12. 土壌との接触部

13. 防油堤貫通部

防食デープが防油堤内又は法 面までしか巻いてない場合、 防食テープ端部付近に腐食を 受けやすい。また、スリーブ タイプの場合は、隙間部に雨 水が浸入し隙間腐食を発生し やすい。

14. CUI の発生しやすい箇所と環境例

1) 保温材の不連続部

保温材の切欠き構造となる保温材の不連続部は、雨水等の侵入により保温材が吸湿し湿潤環境を形成して配管外面腐食環境となるためにCUI発生箇所となる。 代表的箇所の事例を以下に提示する。

(1) 保温材貫通・切欠き部

事例① ドレン、ベント配管の保温材貫通部のCUI

保温材の貫通・切欠き部として雨水の侵入対策が講じられていない個所や、長期使用により当該個所のシール部が損傷してしまった箇所等では、侵入した雨水により湿潤環境を形成してCUI発生箇所となる。図-1は「ドレン、ベント配管の保温材貫通部のCUI」の発生箇所を示す。

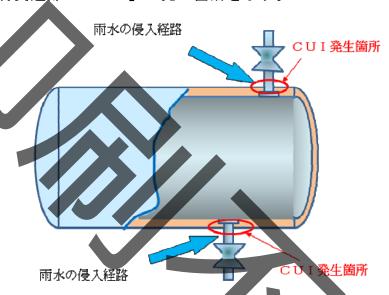


図-1 ドレン、ベント配管の保温材貫通部のCUI

事例② フロアー貫通部などの構造欠陥部のCUI

フロアー貫通部などで、設置された保温配管で、貫通部の雨養生が不良な場合は、構造欠陥部からの雨水などの侵入により、CUIが発生する。図-2に「フロアー貫通部の雨養生不良状況によるCUI」の発生箇所を示す。

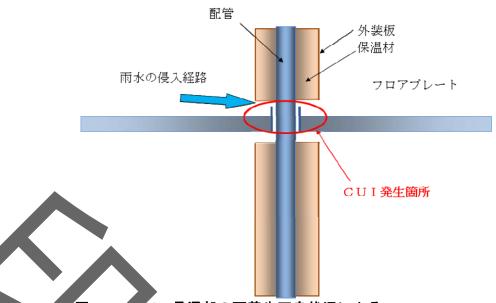


図-2 フロアー貫通部の雨養生不良状況によるCUI

事例③ 保温配管サポート部の保温材切欠き部のCUI

保温配管のサポート部外装板との隙間など、雨養生不良部の保温材切欠き部より侵入する雨水によりでして発生箇所となる。図-3は「保温配管サポート部の保温材切欠き部のCUI」の発生箇所を示す。

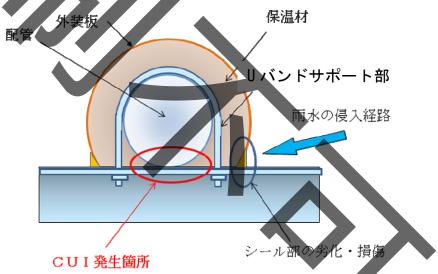


図-3 保温配管サポート部の保温材切欠き部のCUI

事例④ 圧力容器ノズル部の保温材切欠き部のCUI

圧力容器の出入りロノズル配管や、ゲージ等配管の保温材の貫通切欠き部においては雨水の侵入防止対策が不備な箇所において、CUI発生対象個所となる。図 -4 は「圧力容器ノズル部の保温材養生不良箇所のCUI」の発生箇所を示す。

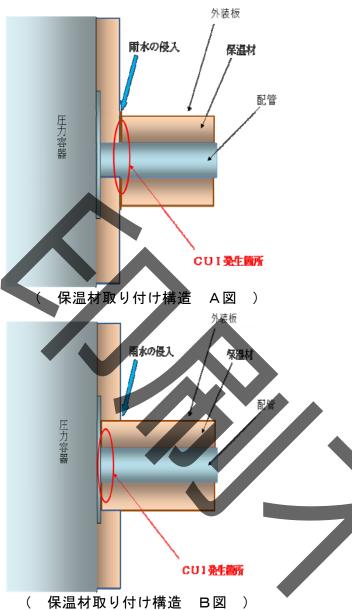
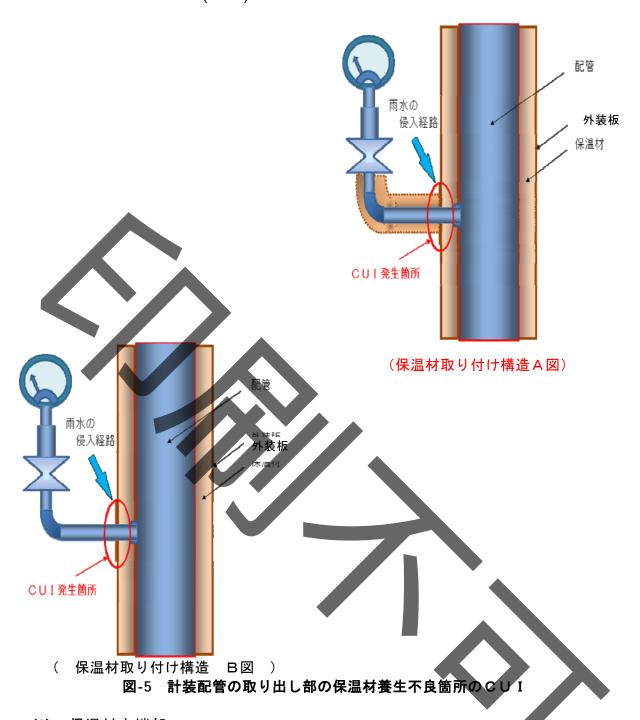



図-4 圧力容器ノズル部の保温材養生不良箇所のCU I

事例⑤ 温度計や圧力計の取り出し計装配管の保温材切欠き部のCUI 温度計や圧力計の取り出し計装配管の保温材貫通部は切欠き部があれば、前 記の場合と同様でCUI発生対象箇所になる。図-5 は「(圧力計) 計装配管の取 り出し部の保温材養生不良箇所のCUI」の発生箇所を示す。

(2) 保温材末端部

事例⑥ 保温材末端部フランジ・付属品

図-6は「保温配管の末端部のCUI」が発生する部分を示すものである。端部の処理としてキャップで保温材を被覆したもので雨養生のシール不良箇所や、フランジ締結でフランジ部を雨養生していない場合などと、その構造も色々とあるが、いずれも外装板等の損傷が発生して雨水侵入し易い場所や雨水侵入防止処理していないものはCUI発生箇所として対象となる。



図-6 保温配管末端部のCUI

事例プ フランジ締結部の保温材養生不良箇所のCUI

図-7 は「フランジ締結部の保温養生不良箇所のCUI」で、当該個所は配管 連結部としてフランジ接続箇所に対しての保温材の雨養生効果が不十分な箇所 や、雨養生が無い場合では大気中の水分が凝縮する湿潤環境の影響も想定される 相乗効果などで起こるCUI発生箇所を示す。

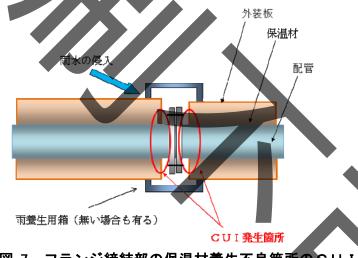


図-7 フランジ締結部の保温材養生不良箇所のCUI

事例⑧ 保温材連結部の防食不良筒所のCUI

防食対策で実施した防食テープなどによる雨水侵入防止対策の施工箇所が 経年劣化等でシール効果が無くなり、逆に浸透した水分が抜けきれずに湿潤環 境を形成するようになった箇所の劣化によるCUIも見逃せない。図-8に「保 温材の連結部のシール不良箇所のCUI」を示すが当該図は、シールのために 施した防水対策が、劣化等で雨水が侵入し、また逆に排水効果が悪いと言う観 点から構造欠陥となり、CUI発生箇所となる例を示す。

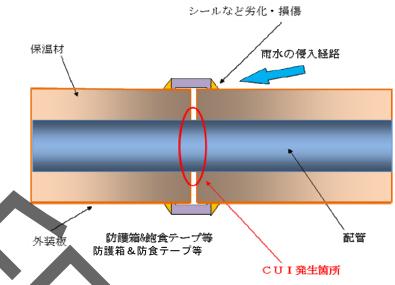


図-8 保温材連結部のシール不良箇所のCUI

2) 外装板の劣化・損傷箇所

保温材外装板の腐食・劣化等の損傷による雨水等の侵入により保温材部分が湿潤環境になってCUI発生箇所となる。代表的な箇所の事例を以下に提示する。 事例② 保温配管外装板の損傷によるCUI

保温材の切欠き構造箇所のCUIとして、最も典型的なCUI発生箇所は、保温材外装板損傷(捲れ、ズレ、破損、落下等)により、雨水侵入箇所となり、保温材が湿潤環境になって配管にCUIが発生する。図-9は「保温配管の外装板の損傷によるCUI」を示すもので、保温材の長期使用に伴う外装板損傷による雨水侵入個所を示す。

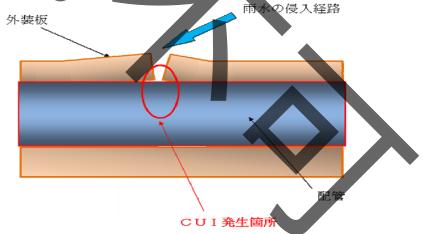
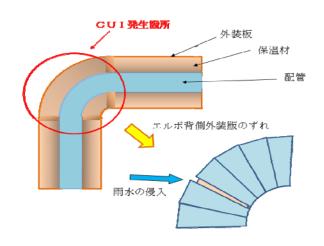



図-9 保温配管の外装板の損傷によるCUI

事例⑩ 配管エルボ背側の外装板の損傷箇所部のCUI

保温配管のエルボ部の背側がエビ構造外装版の場合は、外装板の長期使用によるずれや損傷により、雨水侵入し易い開口箇所を形成する。当該箇所から侵入した雨水により配管のCUIが発生する。図-10 に「保温配管エルボ部の外装板の損傷によるCUI」の発生箇所を示す。特にカブト型成形外装板を使用している部分は外装板が破損しやすく、保温にロックウールを使用しているため雨水で湿潤しやすくCUIを起こしやすい。

図-10 配管エルボ背側の外装板の損傷箇所部のCUI

3) 水の滞留箇所

保温材と配管メタルの間で設計・施工・経年劣化等の不具合個所から発生する水滞留箇所等で湿潤環境を形成するCUI発生箇所である。この場合は保温材の損傷や劣化、または板金の繋ぎ部が雨水の侵入経路となり、雨水が貯まる箇所がいつまでも乾燥しきらずにCUI発生箇所となる場合で、代表個所の特徴を以下に提示する。

事例① 垂直保温配管の直下部 (エルボ部) のCUI

垂直配管で保温板金の繋ぎ部から雨水が侵入して、立下り直下のエルボ部で水が貯まり、いつまでも湿潤環境になったままで CUIが発生してしまう箇所を示す。図-11 は、タワーなどの大型機器のオーバーへッド配管を示すもので、ノズル保温材の貫通部などや、板金のつなぎ目から雨水が侵入するケースで、腐食箇所の様子を示したものである。

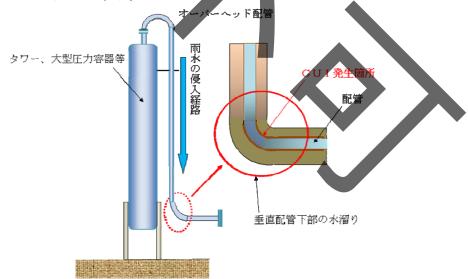


図-11 垂直保温配管直下部のCUI

事例① 水平保温配管の垂れ下がり部位のCUI

図-12 は主に施工時の不具合で、水平配管が撓んでしまったなどの不良施工の

ために、配管が水平な構造とならずに、保温板金の繋ぎ部から雨水が侵入して垂れ下がり中央部が湿潤環境になったCUIを示す。

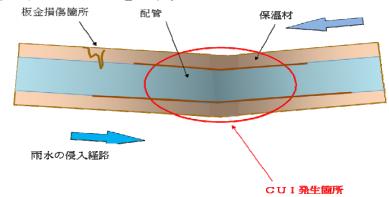


図-12 水平配管垂れ下がり部のCUI

4) 保温材中に湿気を吸収蓄積する環境

保温材配管内部流体温度が温度降下等などの理由により、露点環境を形成するような接続配管(枝管等)箇所では湿潤環境を形成してCUI発生箇所となる。 代表的箇所事例を以下に提示する。

事例③ 露点以下になる分岐枝管等のCUI

本配管から分岐して、配管の温度が露点以下になる流れの停留部や停止部、 又は不規則な流れによる配管、もしくは停止・休止配管に関してはCUI発生の 対象箇所になる恐れがある。これらの事例箇所では結露により発生した水膜や、 雨水の侵入により湿潤環境を形成してCUI発生箇所となる。図-13 は「デッド 部(使用停止)配管&温度降下のある配管のCUI」の発生箇所を示す。

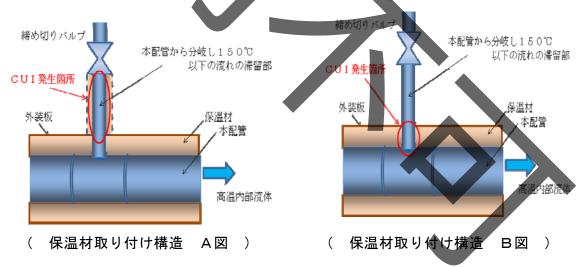


図-13 デッド部(使用停止)配管&温度降下のある配管のCUI

事例(4) 枝管の取り出し部のCUI

大気の水分が配管内部流体温度の降下する影響で露点環境になり、凝縮して 湿潤環境になる事例に関しては、該当箇所が多数考えられるが、ここでは代表 的な2事例について示す。図-14は「(枝管等の接続配管) 保温施工目地部のC UI」の発生箇所を示すもので、保温配管に接続している枝管の取り出し部で、 保温材の切れ目部に内部流体温度からの温度勾配により、大気中の水分が凝縮 した湿潤環境で発生するCUIである。

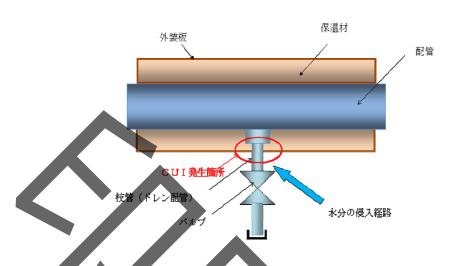


図-14 (枝管等の接続配管)保温施工目地部のCUI

5) 水噴霧・水蒸気・海水飛沫に曝される環境

保温被覆材と配管メタルの間で湿潤環境を形成する部位は同様であるが、この場合は該当保温配管の上側に水分が滴り落ちる構造になっていて、滴り落ちた水分が保温材の損傷や劣化から板金の繋ぎ部などを介して保温材の中に浸透するもので、水分は雨水の他に保冷配管の凝縮水や圧力容器の冷却用に用いた散水の漏水などがある。

事例⑤、⑥水滴直下に位置する保温配管

図-15 並びに、図-16 は「水滴直下に位置する保温配管のCUI」の発生箇所を示すが、フロアーの雨水抜き穴や、常時外表面が結露して水分が滴り落ちるような結露配管直下に保温配管が位置した時のCUIの発生箇所を示したものである。

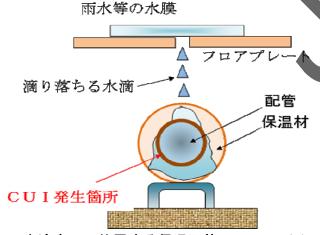


図-15 水滴直下に位置する保温配管のCUI(その1)

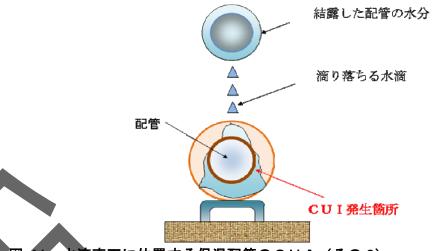


図-16 水滴直下に位置する保温配管のCUI(その2)

附属書 E (参考) 劣化損傷が発生するおそれがない設備の具体例

序文

この附属書は、劣化損傷が発生するおそれがない設備について参考のために記載するものであって、規定の一部ではない。

E.1 劣化損傷が発生するおそれがない設備について

劣化損傷が発生するおそれがない設備についての具体例(参考)を、損傷形態毎に 分類し、次に示す。

E.2. 損傷形態が割れであるもの

E.2.1 塩化物応力腐食割れによる損傷

応力腐食割れとは、腐食と引張応力の共同作用により陽極溶解が局部的に生じてき裂となり、さらにき裂先端の陽極溶解によりき裂が進展する現象であり、時間依存型破壊である。

応力腐食割れは特定の環境、材料及び引張応力の組合せのもとで生じるが、その種類としては、塩化物応力腐食割れ、ポリチオン酸応力腐食割れ、アルカリ応力腐食割れ、アンモニア応力腐食割れ、カーボネイト応力腐食割れ等がある。また、陽極溶解により発生する水素が材料に拡散侵入して生じる水素誘起割れも応力腐食割れの一種である。

発生する条件:

塩化物応力腐食割れは、工業用水、海水その他塩化物(主に塩化物イオン)を含む水溶液、または流体中に塩化物イオンを含むプロセス流体中で、溶接、冷間加工などによる引張残留応力の存在する箇所に起こる割れである。熱交換器の例でいうと、濃縮しない限り塩化物イオン濃度の限界は10ppmで、温度75℃以上で割れが生じることが報告されている。割れ形態は主に粒内割れであるが、鋭敏化された溶接熱影響部などは粒界割れを生じる。塩化物イオン濃度及び温度は、高いほど塩化物応力腐食割れは生じやすく、また、pH は低いほど応力腐食割れの発生可能範囲は拡大する。

オーステナイト・フェライト系 2 相ステンレス鋼 SUS329 J4L の塩化物応力腐食割れの発生限度は、中性付近の pH では約 200 Cである。低 pH 環境では約 100 C以上で応力腐食割れが発生する可能性がある。高純度フェライト系ステンレス鋼の SUS444 は $100 \sim 200$ Cの温度範囲で低塩化物マナン濃度において、塩化物応力腐食割れ対策鋼として最も多く採用されている。しかし、SUS444 を採用する際には孔食、隙間腐食に注意する必要がある。

劣化損傷を受けない事例:

応力腐食割れは、特定の環境、材料及び引張応力の影響の組合せにより発生するため、劣化損傷を防止するためには、特定の組合せとならないような措置を講ずることが必要である。すなわち、環境制御としてプロセス溶液中の塩化物イオンと溶存酸素を低減させる処置をし、材料選定についての配慮をし(例えば、オーステナイト系ステンレス鋼へのNi、Siの添加及びPの低減、フェライト系

KHK/JOGMEC S 0850-8 (2024)

ステンレス鋼の採用、2 相ステンレス鋼の採用、銅合金、チタン合金等の非鉄金属の採用等)、さらに引張残留応力を軽減する措置を行い、劣化損傷が発生する特定の組合せにならないようにすれば、劣化損傷が発生するおそれはないと考えられる。

E.2.2 疲労による損傷

a) 疲労

発生する条件:

疲労は、静的に負荷されれば問題ない応力または変位が繰り返されることにより、き裂が発生・進展する現象である。あらゆる金属材料が発生の可能性を持つ。また一般に、繰返し応力が降伏点未満で破断までの負荷回数が多いのが高サイクル疲労 降伏点以上の繰返し応力により比較的少ない繰返し回数で破断に至る現象を低サイクル疲労という。

疲労は材料表面に優先的に発生・進展し、主に構造不連続部等の応力集中部を起点とする。また、繰返し応力の原因は、圧力等の荷重に加えて、流体振動(脈動、カルマン渦列などを含む)及び機械的振動、さらには温度変動(熱応力)がある。疲労による損傷を及ぼず因子としては、材料、部材の形状、繰返し応力(応力振幅と平均応力)等があり、設計・製作時に考慮する必要がある。

劣化損傷を受けない事例:

運転圧力による圧力変動が少なく、起動・停止が少ない条件で使用される設備については、10⁷ 回に及ぶ高サイクル疲労はほとんど想定されず、起動・停止に伴う 10⁴ 回程度の低サイクル疲労が考慮の対象となる。一般に金属材料の疲労限度(10⁷ 回疲労強度)は材料の引張強さの 0.5 倍であり、特定設備検査規則の許容応力の引張強さに対する設計マージンが 4 又は 3.5 としていることから、設計裕度は 2 又は 1.75 と十分に考慮されている。また 10⁴ 回程度の低サイクル疲労の疲労強度としては 10⁷ 回のそれに比して約 2 倍の余裕があるため、上記設計裕度は 4 又は 3.5 となり、切欠きによる応力集中係数が 3 を超えるような場合でも、設計裕度がなくなることはない。

したがって、圧力変動、振動等による繰返し回数条件で使用される設備を除いて、特定則に従い製造された設備であれば、劣化損傷が発生するおそれはないと考えられる。

ただし、圧力変動、振動等による繰返し回数の多い条件で使用される設備と部位については、疲労を考慮した設計を行う措置が必要であることに注意を要する。

b) 熱疲労

発生する条件:

熱疲労は、熱応力の繰り返しにより発生する損傷であり、損傷の基本的な特徴は一般的な疲労と同じである。熱的過渡による低サイクル熱疲労に加えて、高温と低温の流体が共存する設備では、熱成層化、間欠流、混合流、熱的衝突による高サイクル熱疲労が問題となる。また熱サイクルの過程において、高温域での保持時間は熱疲労寿命に大きく影響し、高温で一定時間保持される場合にはクリープ効果を考慮に入れる必要がある。設備の部材が起動・停止に伴って温度変動を受ける場合に、熱疲労が発生することがある。また、圧力容器の支持部、ノズル部などの構造不連続部で、設備の起動・停止による温度変動により熱疲労が発生することがある。さらに配管内部を流れる流体の温度が変動す

る場合に、高サイクル熱疲労が発生する例がある。

劣化損傷を受けない事例:

対策としては、材料面では使用環境が許される範囲でインバー、コバール、ニレジストなどのいわゆる低線膨張係数材料を使用する。また、設計的には異材を接合する場合は線膨張係数の近い材料を使用したり、部材の拘束を少なくして温度変化による変形の自由度を増して、急激な温度勾配にならない構造にする。さらに、構造不連続部などの応力集中部をなくし、板厚の変化をできるだけ減らす。同時に設備の起動・停止時に温度をコントロールする。そのような対策を施した設備は、劣化損傷が発生するおそれはないと考えられる。

E.2.3 クリープによる損傷

a) クリープ破壊

発生する条件:

金属材料は、高温条件下(金属材料の融点の約 1/2 以上の温度)において、一定 応力のもとで、ひずみが時間的に増大し続け、破壊に至る現象である。このように応力により時間とともに変形が進行する現象をクリープといい、これによる破断をクリープ破壊という。クリープが問題となる概略の温度は、特定則の 許容応力算定基準でいえば、炭素鋼と低合金鋼では 440℃、オーステナイト系ステンレス鋼では 540℃、Ni 基耐熱合金では 650℃程度である。

劣化損傷を受けない事例:

設計・使用条件がクリープ温度領域でない設備は、原則としてクリープによる 劣化損傷が発生しないと考えられる。また、クリープ温度領域において使用される設備であっても、ラーソンミラーカーブ等を使用しクリープ損傷を評価し て適切な設計マージンを採用すれば、少なくとも設計寿命の間はクリープ損傷 が問題となることはない。

附属書 F (規定) 供用中探傷試験

F.1 適用範囲

高圧ガス設備の内部の状況を外部から代替検査することが可能な設備について、 次の事項について規定する。

- 1) 適用が可能な高圧ガス設備の条件
- 2) 外部から行う代替検査(以下「供用中探傷試験」という。)の方法

F.2 供用中探傷試験を行うことが可能な高圧ガス設備の条件

- a) 次の条件に適合する第一種製造者の高圧ガス設備でなければならない。
 - 1) 供用中探傷試験に係る方法及び基準を適切かつ明確に定め、文書化していなければならない。
 - 2) 試験設備の作動前における精度の確認等性能についての点検に係る方法及び 基準を適切かつ明確に定め、文書化していなければならない。
 - 3) 欠陥が検出された場合における検出以後の欠陥の状態に対する定期的な確認、 欠陥の除去及び修理等検出された欠陥しついての対応策を適切かつ明確に定 め、文書化していなければならない。
 - 4) 検査の一部又は全部を委託する場合にあっては、その委託先の管理に関する事項を適切かつ明確に定め、文書化していなければならない。
 - 5) 検査のデータを適切に評価できる担当者((社)日本非破壊検査協会が認定する 非破壊検査技術者のうち、超音波2種(UT2種)以上又は甲種機械責任者免状 の資格を有している者をいう。)を置いていなければならない。
 - 6) 検査のデータ及び検査結果を時系列順に保管し、これらを適切に把握できる 体制を有していなければならない。
- b) 高圧ガス設備は、次の条件に適合するものでなければならない。
 - 1) 炭素鋼又は低合金鋼を材料として使用するものでなければならない
 - 2) 応力腐食割れ、著しい腐食その他欠陥の原因となる物質を取り扱っていない ものでなければならない。
 - 3) 溶接部の表面が供用中探傷試験の実施に支障がないように仕上げ処理されて いるものでなければならない。
 - 4) 高圧ガス設備の減肉及び劣化損傷箇所が検査箇所として明確になっていなければならない。
 - 5) 前回の開放検査の時点から溶接を伴う修理又は改造(以下「溶接修理等」という。)が行われていないものでなければならない。

F.3 供用中探傷試験

- a) 供用中探傷試験は、次に該当する試験でなければならない。
 - 1) 超音波探傷試験により高圧ガス設備外部から高圧ガス設備の内面における欠陥を検査しなければならない。
 - 2) 検査のデータが自動記録され、欠陥の程度又は位置の確認の再現が可能でな

ければならない。

- 3) 高圧ガス設備の内面における深さ 0.5mm 以上の欠陥の確認が可能な性能を 有していなければならない。
- 4) 適切な技能を有する者((社)日本非破壊検査協会が認定する非破壊検査技術者のうち、超音波 2 種(UT2 種)以上の資格及び高圧ガス設備の検査に十分な経験がある者をいう。)が行わなればならない。
- b) 供用中探傷試験の採用等について
 - 1) 供用中探傷試験は、連続して採用してはいけない。
 - 2) 供用中探傷試験にあっては、高圧ガス設備の内面の傷又は割れが高圧ガス設備の材料の最小厚さに達せず、かつ、その深さが 2mm 以下のものであるときは、当該高圧ガス設備の内部は欠陥がないものとみなす。この場合において、当該箇所に関する供用中探傷試験を毎年 1 回以上行わなければならない。高圧ガス設備の内面の傷又は割れの深さが 2mm を超えるか又は最小肉厚に達するときは、直ちに開放検査を実施し、必要な補修及び試験を行う。なお、供用中探傷試験は、目視検査における内部の目視検査の代替検査にもなる。

附属書 G (規定) 運転状態の高圧ガス、圧力を用いて行う気密試験

G.1 適用範囲

高圧ガス設備を開放した場合の気密試験方法として、運転状態の高圧ガス、圧力により気密試験を行う場合について、次の事項について規定する。

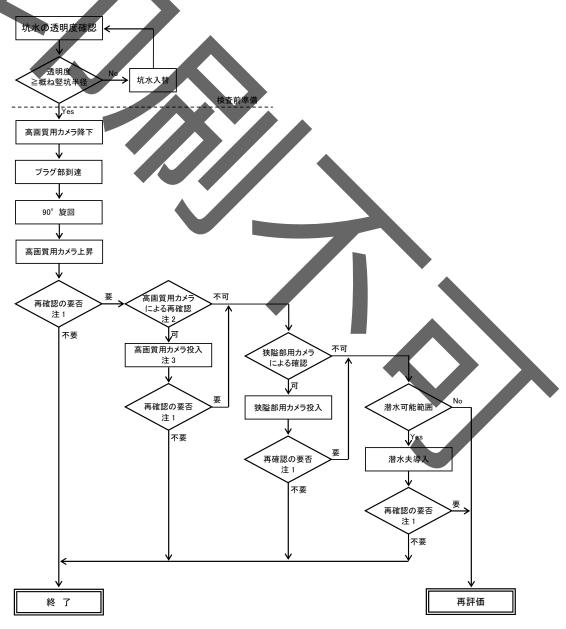
- 1) 適用要件
- 2) 気密試験の手順

G.2 適用要件

運転状態の高圧ガスを用いることが適当な場合とは、停止した状態での試験用ガスを用いた気密試験では、気密試験の目的を達せない場合(ポンプ等の動機器の軸封部は、運転状態において内部流体の漏えいを防ぐ目的で設計されており、停止時にガスを用いて試験すれば漏えいが生じるので、運転状態の高圧ガスを用いることが適当である。)

G.3 気密試験の手順

- a) まず、ユーティリティ窒素等危険性のない気体を用いた試験により、漏えいの有無を確認する。ただし、軸封部を有する動機器又は多段式の圧縮機等で危険性のない気体による漏えいの確認が適切でない場合は、軸封部、出入口配管等の組立状態等の確認を行い、十分な安全確認をした上で、運転状態の高圧ガスを用いて気密試験を行ってもよい。
- b) 次に、運転状態の高圧ガスを用いた気密試験を行う。この場合、圧力は段階的 に上げることとし、異常のないことを確認しながら昇圧する。


なお、a)及びb)に先立つ開放検査に際して、並びにa)及びb)の気密試験に際しては、気密試験要領及びフランジ等の継手開放部のボルトの締付管理、ホットボルティングその他の入念な施工管理に関する規定・基準類が整備され、現に設備管理に活用されていなければならない。

附属書 H (参考) 水没部の金属管等の目視検査方法

耐震設計構造の検査では、水没部の耐震設計構造物に異常のないことを 10 年以内 に 1 回以上目視での検査が可能な部分に限って行うことになっている。参考として、 その検査方法の一例を以下に示す。

配管竪坑水没部の目視検査は、水中ビデオカメラによる映像での確認を基本とし、 その映像で疑わしいと思われる箇所やより詳細に確認する必要があると判断される 箇所があれば、その箇所の状況に応じて再度水中ビデオカメラの投入や、狭隘部用 水中ビデオカメラ又は潜水夫による確認を行う。

配管竪坑水没部目視検査の検査フローの例を次に示す。

附属書 I (参考) 金属管の選定について

金属管の腐食は材質以外に設置環境により異なる。金属管の外面は、電気防食により同じ防食環境にあるが、内面は用途により内部流体等が異なり、全ての金属管が同一環境にあるわけではない。非破壊検査の対象とする金属管の選定にあたっては、金属管の材質に応じて、腐食が生じる可能性がある環境となる場合等も考慮して選定する必要がある。配管竪坑の金属管において考慮すべき事項の例としては次がある。

1. 金属管の材質、設置環境等

- (1) 金属管の材質により、腐食環境や腐食形態が異なることに留意する必要がある。
- (2) 金属管内の内面環境 (LP ガス、窒素、水等) の種類により、腐食状況が異なってくることに留意する必要がある。
- (3) 金属管の外面環境(配管竪坑水質、電気防食の有無)により、腐食状況が異なってくることに留意する必要がある。
- (4) 一般的に溶接部は母材部に比べて腐食しやすいとされている。金属管の製法 (溶接鋼管と継目無鋼管等)により腐食リスクが異なることに留意する必要があ る。
- (5) 金属の腐食は表面の状態、内部応力、付着異物の有無などにより形態等が異なることに留意する必要がある。

2. 運転状況等

- (1) 運転に伴って金属管内部の流体が移動したり入れ替わることが考えられる場合は、金属管の内部環境の変化を考慮する必要がある。
- (2) 金属管内に設置してある機器等のメンテナンス時に内部流体が入れ替わる場合は、金属管の内部環境の変化を考慮する必要がある。

金属管の非破壊検査は、上記を考慮して金属管を複数のグループに区分し、少なくとも各グループから1本以上を選定して行うことが望ました。なお、各グループからの選定にあたっては、腐食が生じた場合のリスクや緊急遮断装置(貯槽遮断弁)の故障、金属管の用途等も考慮し複数を選定することも考慮すべきである。

KHK/JOGMEC S 0850-8 (2024) 保安検査基準 液化石油ガス岩盤備蓄基地関係 解 説

この解説は、基準に規定・記載した事柄を説明するものであり、規格の一部ではない。

1 制定の趣旨

高圧ガス製造施設(液化石油ガス岩盤備蓄基地関係)については、従来の高圧ガス保安法の省令においてその検査方法の詳細が規定されておらず、今後、液化石油ガス岩盤備蓄基地関係の設備についての保安の維持・向上の観点から実効性のある望ましい検査の方法を検討し、関係法令との調和を図ることを目的に 2012 年にこの基準を制定した。

2 主な検討内容

液化石油ガス岩盤備蓄基地の運用は、日本国内において初めてのこころみであり、従来の保安検査基準(コンビナート等保安規則関係)と異なる部分があるため、次の事項について検討を行った。

- a) 従来の保安検査基準(コンビナート等保安規則関係)の考え方をベースとして液化石油ガス岩盤備蓄基地における特有項目を選定して追加し、液化石油ガス岩盤備蓄基地に関連性のない項目については削除した。
- b) 配管竪坑内深部の検査のあり方について検討を行った。また、参考として**附属書** B に検査周期を 10 年以内に 1 回とした理由について整理した。
- c) 底水排水ポンプの保安電力に対する検査のあり方について、その方法を検討した。
- d) 金属管の腐食防止措置及び破損による漏えいを遮断するための措置について 検討を行った。
- e) 岩盤貯槽の健全性を確認するための方法について検討を行った。

3 前回までの改正の趣旨及び経緯

この基準は、2018年の改正を経て、今回(2024年)の改正に至った。前回(2018年)改正の経緯を、次に示す。

a) 2018年改正

2017年に改正された保安検査基準(コンビナート等保安規則関係)との共通部分について整合を図ると共に、事業者の要望を踏まえ、以下の改正を行った。

- 1) 4.2.4 非破壊検査 同一配管系内を一部取り替える場合の開放検査周期 の整理、見直しを行った。
- 2) 5.1.2 液面計 液面計の検査項目について、完成検査の検査項目と整合を 図り、精度検査を削除した。
- 3) 5.1.3 界面計 界面計の検査項目について、完成検査の検査項目と整合を 図り、精度検査を削除し、作動検査を追加した。
- 4) 5.2.2 保安電力等 電力以外の措置に係る検査方法について整理、見直し を行い、検査方法を追加した。
- 5) その他 解釈の明確化のため、字句の修正、表現の見直し等を行った。

4 今回(2024年)の改正の趣旨

- a) 本基準の制定から5年が経過したため定期見直しを行うにあたって、2013年の 操業開始以降、継続的に行われている石油ガス岩盤備蓄基地に係る保安検査等 操業実績確認検討業務(独立行政法人エネルギー・金属鉱物資源機構の委託事 業)における検討結果を踏まえ、主に以下の改正を行った。
 - 1) 3.2.3 液化石油ガス岩盤貯槽に係る構造物の目視検査の対象範囲を明確 化すると共に、目視検査の方法の参考として、附属書Hを追加した。
 - 2) 6.11.1 c)及び6.11.2 金属管の腐食防止措置の検査について、目視検査及び非破壊検査を行う対象金属管を抜取りで実施することが可能であることを明確化すると共に、金属管の選定の参考として、附属書 I を追加した。
 - 3) 6.11.3 金属管の腐食防止措置として行う電位測定の方法を具体的に規定した。
- b) 保安検査基準(コンビナート等保安規則関係) との共通部分について整合を 図り、主に以下の改正を行った。
 - 1) 総則において、ドローン、ロボット、センシング、AI等の技術を保安検 でに活用できることを明確化した。
 - 2) 4.2.4 完成検査を要しない工事を行った高圧ガス設備に係る開放検査の周期の起点を明確化した。
 - 3) 4.3.2 開放の解釈を明確化した。
 - 4) 6.1.2 日本工業規格B8210(1994)において適用範囲外とされている安全 弁を明確化した。
 - 5) 6.7.2 検査対象を明確化した。
 - 6) 附属書C 露点温度の条件を明確化した。
 - 7) 附属書D 引用文献を最新化した。

5 解説事項

液化石油ガス岩盤備蓄基地における特有項目で、コンビナート等保安規則第 5 条第 1 項第 64 号の 2 におけるものとコンビナート等保安規則に記載はあるが検査方法が異なるものは以下の通りである。

- 5.1 コンビナート等保安規則第5条第1項第64項の2におけるもの
 - イ.水と液化石油ガスの境界面を測定する計器(以下「界面計」という。)の設置
 - ロ. 水封機能を維持するための措置
 - ハ. 腐食のおそれのある金属管には、腐食を防止するための措置
 - ニ. 金属管の破損により液化石油ガスが漏えいしたときに安全に、かつ、速やか に遮断するための措置
 - ホ. 金属管の地上部分の破損を防止するための措置
- 5.2 コンビナート等保安規則における保安検査基準には記載されているが、岩盤貯槽では検査方法が異なるもの
 - イ. 耐震設計構造
 - 口. 気密性能
 - ハ. 保安電力等